OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 45, Iss. 5 — Feb. 10, 2006
  • pp: 1072–1078

Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis

Gregory M. Palmer, Changfang Zhu, Tara M. Breslin, Fushen Xu, Kennedy W. Gilchrist, and Nirmala Ramanujam  »View Author Affiliations

Applied Optics, Vol. 45, Issue 5, pp. 1072-1078 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (162 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Monte Carlo-based inverse model of diffuse reflectance described in part I of this pair of companion papers was applied to the diffuse reflectance spectra of a set of 17 malignant and 24 normal–benign ex vivo human breast tissue samples. This model allows extraction of physically meaningful tissue parameters, which include the concentration of absorbers and the size and density of scatterers present in tissue. It was assumed that intrinsic absorption could be attributed to oxygenated and deoxygenated hemoglobin and beta-carotene, that scattering could be modeled by spheres of a uniform size distribution, and that the refractive indices of the spheres and the surrounding medium are known. The tissue diffuse reflectance spectra were evaluated over a wavelength range of 400 600   nm . The extracted parameters that showed the statistically most significant differences between malignant and nonmalignant breast tissues were hemoglobin saturation and the mean reduced scattering coefficient. Malignant tissues showed decreased hemoglobin saturation and an increased mean reduced scattering coefficient compared with nonmalignant tissues. A support vector machine classification algorithm was then used to classify a sample as malignant or nonmalignant based on these two extracted parameters and produced a cross-validated sensitivity and specificity of 82 % and 92 % , respectively.

© 2006 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 29, 2005
Manuscript Accepted: July 15, 2005

Virtual Issues
Vol. 1, Iss. 3 Virtual Journal for Biomedical Optics

Gregory M. Palmer, Changfang Zhu, Tara M. Breslin, Fushen Xu, Kennedy W. Gilchrist, and Nirmala Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis," Appl. Opt. 45, 1072-1078 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Jackman, K. W. Nowels, J. Rodriguez-Soto, F. A. Marzoni, Jr., S. I. Finkelstein, and M. J. Shepard, "Stereotactic, automated, large-core needle biopsy of nonpalpable breast lesions: false-negative and histologic underestimation rates after long-term follow-up," Radiology 210, 799-805 (1999).
  2. D. D. Dershaw, E. A. Morris, L. Liberman, and A. F. Abramson, "Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy," Radiology 198, 323-325 (1996).
  3. J. E. Meyer, D. N. Smith, S. C. Lester, P. J. DiPiro, C. M. Denison, S. C. Harvey, R. L. Christian, A. Richardson, and W. D. Ko, "Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy," Radiology 206, 717-720 (1998).
  4. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer," IEEE Trans. Biomed. Eng. 50, 1233-1242 (2003). [CrossRef]
  5. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, "Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results," J. Biomed. Opt. 5, 221-228 (2000). [CrossRef]
  6. Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "UV reflectance spectroscopy probes DNA and protein changes in human breast tissues," J. Clin. Laser Med. Surg. 19, 35-39 (2001). [CrossRef]
  7. N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, "Measurement of optical transport properties of normal and malignant human breast tissue," Appl. Opt. 40, 176-184 (2001).
  8. G. M. Palmer and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006).
  9. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998).
  10. F. P. Bolin, C. R. Preuss, C. R. Taylor, and R. J. Ference, "Refractive index of some mammalian tissues using a fiber optic cladding method," Appl. Opt. 28, 2297-2303 (1989).
  11. F. A. Duck, Physical Properties of Tissue:Comprehensive Reference Book (Academic, 1990).
  12. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van-Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999).
  13. J. R. Mourant, T. M. Johnson, and J. P. Freyer, "Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements," Appl. Opt. 40, 5114-5123 (2001).
  14. Y. Yang, E. J. Celmer, J. A. Koutcher, and R. R. Alfano, "DNA and protein changes caused by disease in human breast tissues probed by the Kubelka-Munk spectral functional," Photochem. Photobiol. 75, 627-632 (2002). [CrossRef]
  15. S. Prahl, Optical Properties Spectra (Oregon Medical Laser Center, 2003); available at http://omlc.ogi.edu/spectra.
  16. R. M. Bethea, B. S. Duran, and T. L. Boullion, Statistical Methods for Engineers and Scientists (Marcel Dekker, 1995).
  17. S. Gunn, Support Vector Machines for Classification and Regression (University of Southampton, Department of Electronics and Computer Science, 1998); available at http://www.ecs.soton.ac.uk/∼srg/publications/pdf/SVM.pdf.
  18. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Min. Knowl. Discov. 2, 121-167 (1998). [CrossRef]
  19. P. I. Good, Resampling Methods: A Practical Guide to Data Analysis (Birkhäuser, 2001).
  20. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis (Prentice-Hall, 2002).
  21. C. Zhu, G. M. Palmer, T. M. Breslin, F. Xu, and N. Ramanujam, "Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer," J. Biomed. Opt. 10, 024032-1-024032-13 (2005). [CrossRef]
  22. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000). [CrossRef]
  23. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003).
  24. V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002). [CrossRef]
  25. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998).
  26. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001).
  27. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stossel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004). [CrossRef]
  28. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited