OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 45, Iss. 5 — Feb. 10, 2006
  • pp: 836–850

Digital in-line holographic microscopy

Jorge Garcia-Sucerquia, Wenbo Xu, Stephan K. Jericho, Peter Klages, Manfred H. Jericho, and H. Jürgen Kreuzer  »View Author Affiliations

Applied Optics, Vol. 45, Issue 5, pp. 836-850 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2697 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We first briefly review the state of the art of digital in-line holographic microscopy (DIHM) with numerical reconstruction and then discuss some technical issues, such as lateral and depth resolution, depth of field, twin image, four-dimensional tracking, and reconstruction algorithm. We then present a host of examples from microfluidics and biology of tracking the motion of spheres, algae, and bacteria. Finally, we introduce an underwater version of DIHM that is suitable for in situ studies in an ocean environment that show the motion of various plankton species.

© 2006 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(100.2000) Image processing : Digital image processing
(100.6640) Image processing : Superresolution
(110.0180) Imaging systems : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Digital/Electronic Holographic Microscopy

Original Manuscript: May 16, 2005
Revised Manuscript: August 16, 2005
Manuscript Accepted: August 16, 2005

Virtual Issues
Vol. 1, Iss. 3 Virtual Journal for Biomedical Optics

Jorge Garcia-Sucerquia, Wenbo Xu, Stephan K. Jericho, Peter Klages, Manfred H. Jericho, and H. Jürgen Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
  2. E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1130 (1962).
  3. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with continuous-tone objects," J. Opt. Soc. Am. 53, 1377-1381 (1963).
  4. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with diffused illumination and three-dimensional objects," J. Opt. Soc. Am. 54, 1295-1301.
  5. P. Hariharan, Optical Holography (Cambridge U. Press, 1996).
  6. T. Kreis, Holographic Interferometry (Akademie Verlag, 1996).
  7. Y. Aoki, "Optical and numerical reconstruction of images from sound-wave holograms," IEEE Trans. Acoust. Speech AU-18, 258-267 (1970).
  8. M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlyakov, "Computer synthesis of transparency holograms," Sov. Phys. Tech. Phys. 17, 329-332 (1972).
  9. T. H. Demetrakopoulos and R. Mittra, "Digital and optical reconstruction of images from suboptical diffraction patterns," Appl. Opt. 13, 665-670 (1974).
  10. L. Onural and P. D. Scott, "Digital decoding of in-line holograms," Opt. Eng. 26, 1124-1132 (1987).
  11. G. Liu and P. D. Scott, "Phase retrieval and twin-image elemination for in-line Fresnel holograms," J. Opt. Soc. Am. A 4, 159-165 (1987).
  12. L. Onural and M. T. Oezgen, "Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis," J. Opt. Soc. Am. A 9, 252-260 (1992).
  13. H.-W. Fink, "Point source for electrons and ions," IBM J. Res. Dev. 30, 460-463 (1986).
  14. H.-W. Fink, "Point source for electrons and ions," Phys. Scr. 38, 260-263 (1988).
  15. W. Stocker, H.-W. Fink, and R. Morin, "Low-energy electron and ion projection microscopy," Ultramicroscopy 31, 379-384 (1989). [CrossRef]
  16. H.-W. Fink, W. Stocker, and H. Schmid, "Holography with low-energy electrons," Phys. Rev. Lett. 65, 1204-1206 (1990). [CrossRef]
  17. H.-W. Fink, H. Schmid, H. J. Kreuzer, and A. Wierzbicki, "Atomic resolution in lens-less low-energy electron holography," Phys. Rev. Lett. 67, 1543-1546 (1991). [CrossRef]
  18. H. J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid, "Theory of the point source electron microscope," Ultramicroscopy 45, 381-403 (1992). [CrossRef]
  19. H. J. Kreuzer and R. P. Pawlitzek, LEEPS, Version 1.2: a software package for the simulation and reconstruction of low energy electron point source images and other holograms, (Helix Science Applications, Halifax, Nova Scotia, Canada, 1993-1998).
  20. S. Horch and R. Morin, "Field emission from atomic size sources," J. Appl. Phys. 74, 3652-3657 (1993). [CrossRef]
  21. H.-W. Fink, H. Schmid, and H. J. Kreuzer, "State of the art of low-energy electron holography," in Electron Holography, A.Tonomura, L.F.Allard, D.C.Pozzi, D.C.Joy, and Y.A.Ono, eds. (Elsevier Science B.V., 1995).
  22. H.-W. Fink, H. Schmid, E. Ermantraut, and T. Schulz, "Electron holography of individual DNA molecules," J. Opt. Soc. Am. A 14, 2168-2172 (1997).
  23. A. Gölzhäuser, B. Völkel, B. Jäger, M. Zhamikov, H. J. Kreuzer, and M. Grunze, "Holographic imaging of macromolecules," J. Vac. Sci. Technol. A 16, 3025-3028 (1998). [CrossRef]
  24. H. Schmid, H.-W. Fink, and H. J. Kreuzer, "In-line holography using low-energy electrons and photons: applications for manipulation on a nanometer scale," J. Vac. Sci. Technol. B 13, 2428-2431 (1995). [CrossRef]
  25. H. J. Kreuzer, H.-W. Fink, H. Schmid, and S. Bonev, "Holography of holes, with electrons and photons," J. Microsc. 178, 191-197 (1995).
  26. H. J. Kreuzer, "Low energy electron point source microscopy," Micron 26, 503-509 (1995). [CrossRef]
  27. H. J. Kreuzer, N. Pomerleau, K. Blagrave, and M. H. Jericho, "Digital in-line holography with numerical reconstruction," in Interferometry '99: Techniques and Technologies, M. Kujawinska and M. Takeda, eds., Proc. SPIE 3744, 65-74 (1999). [CrossRef]
  28. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005). [CrossRef]
  29. M. K. Kim, "Wavelength-scanning digital interference holography for optical sectioning imaging," Opt. Lett. 24, 1693-1695 (1999).
  30. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
  31. T. Zhang and I. Yamaguchi, "Three-dimensional microscopy with phase-shifting digital holography," Opt. Lett. 23, 1221-1223 (1998).
  32. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6186 (2001).
  33. T.-C. Poon, "Recent progress in optical scanning holography," J. Holography Speckle 1, 6-25 (2004). [CrossRef]
  34. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, "Three-dimensional microscopy by optical scanning holography," Opt. Eng. 34, 1338-1344 (1995).
  35. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. Wu, "Three-dimensional holographic fluorescence microscopy," Opt. Lett. 22, 1506-1508 (1997).
  36. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, "Imaging properties of scanning holographic microscopy," J. Opt. Soc. Am. A 17, 380-390 (2000).
  37. J. Swoger, M. Martinez-Corral, J. Huisken, and E. Stelzer, "Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy," J. Opt. Soc. Am. A 19, 1910-1918 (2002).
  38. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002).
  39. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. USA 98, 11,301-11,305 (2001).
  40. H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with photons and electrons," J. Phys. Condens. Matter 13, 10,729-10,741 (2001). [CrossRef]
  41. H. J. Kreuzer, M. H. Jericho, and W. Xu, "Digital in-line holography with numerical reconstruction: three-dimensional particle tracking," in Recent Developments in Traceable Dimensional Measurements, J. E. Decker and N. Brown, eds., Proc. SPIE 4401, 234-244 (2001). [CrossRef]
  42. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Tracking particles in 4-D with in-line holographic microscopy," Opt. Lett. 28, 164-166 (2003).
  43. H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, "Digital in-line holography with numerical reconstruction: 4D tracking of microstructures and organisms," in Proc. SPIE 5005, 299-306 (2003). [CrossRef]
  44. N. I. Lewis, A. D. Cemballa, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Effect of temperature in motility of three species of the marine dinoflagellate Alexandrium," in Proceedings of the Eighth Canadian Workshop on Harmful Marine Algae, S. S. Bates, ed., Can. Tech. Rep. Fish. Aquat. Sci. 2498, 80-87 (2003).
  45. W. Xu, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Optik (to be published).
  46. D. Gabor, "Microscopy by reconstructed wavefronts," Proc. R. Soc. London Ser. A 197, 454-487 (1949).
  47. J. J. Barton, "Photoelectron holography," Phys. Rev. Lett. 61, 1356-1359 (1988). [CrossRef]
  48. K. Heinz, U. Starke, and J. Bernardt, "Surface holography with LEED electrons," Prog. Surf. Sci. 64, 163-178 (2000). [CrossRef]
  49. U. Schnars and W. Jüptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  50. L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holography (translated from Russian by D. Parsons, Consultants Bureau, New York, 1989).
  51. L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).
  52. L. Rayleigh, Collected Papers (Cambridge U. Press, 1902), pp. 3, 84.
  53. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1993).
  54. T. Asakura, "Resolution of two unequally bright points with partially coherent light," Nouv. Rev. Opt. 5, 169-177 (1974). [CrossRef]
  55. J. J. Barton, "Removing multiple scattering and twin images from hologaphic images," Phys. Rev. Lett. 67, 3106-3109 (1991). [CrossRef]
  56. J. B. DeVelis, G. Parrent, and B. J. Thompson, "Image reconstruction with Fraunhofer holograms," J. Opt. Soc. Am. 56, 423-1427 (1996).
  57. K. Doh, T.-C. Poon, and G. Indebetouw, "Twin-image noise in optical scanning holography," Opt. Eng. 35, 1550-1555 (1996).
  58. P. Sun and J.-H. Xie, "Method for reduction of background artifacts of images in scanning holography with a Fresnel-zone-plate coded aperture," Appl. Opt. 43, 4214-4218 (2004). [CrossRef]
  59. S.-G. Kim, B. Lee, and E.-S. Kim, "Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram," Appl. Opt. 36, 4784-4791 (1997).
  60. T.-C. Poon, T. Kim, G. Indebetouw, M. H. Wu, K. Shinoda, and Y. Suzuki, "Twin-image elimination experiments for three-dimensional images in optical scanning holography," Opt. Lett. 25, 215-217 (2000).
  61. Y. Takaki, H. Kawai, and H. Ohzu, "Hybrid holographic microscopy free of conjugate and zero-order images," Appl. Opt. 38, 4990-4996 (1999).
  62. P. Korecki, G. Materlik, and J. Korecki, "Complex gamma-ray hologram: solution to twin images problem in atomic resolution imaging," Phys. Rev. Lett. 86, 1534-1537 (2001). [CrossRef]
  63. J. P. Brody, P. Yager, R. E. Goldstein, and R. H. Austin, "Biotechnology at low Reynolds numbers," Biophys. J. 71, 3430-3441 (1996).
  64. J. Yang, Y. Huang, X. B. Wang, F. F. Becker, and P. R. C. Gascoyne, "Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field flow fractionation," Anal. Chem. 71, 911-918 (1999). [CrossRef]
  65. A. Hatch, A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Schilling, B. H. Weigl, and P. Yager, "A rapid diffusion immunoassay in a T-sensor," Nat. Biotechnol. 19, 461-465 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited