OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 45, Iss. 5 — Feb. 10, 2006
  • pp: 864–871

Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis

Frank Dubois, Natacha Callens, Catherine Yourassowsky, Mauricio Hoyos, Pascal Kurowski, and Olivier Monnom  »View Author Affiliations


Applied Optics, Vol. 45, Issue 5, pp. 864-871 (2006)
http://dx.doi.org/10.1364/AO.45.000864


View Full Text Article

Enhanced HTML    Acrobat PDF (398 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the use of a digital holographic microscope working in partially coherent illumination to study in three dimensions a micrometer-size particle flow. The phenomenon under investigation rapidly varies in such a way that it is necessary to record, for every camera frame, the complete holographic information for further processing. For this purpose, we implement the Fourier-transform method for optical amplitude extraction. The suspension of particles is flowing in a split-flow lateral-transport thin separation cell that is usually used to separate the species by their sizes. Details of the optical implementation are provided. Examples of reconstructed images of different particle sizes are shown, and a particle-velocity measurement technique that is based on the blurred holographic image is exploited.

© 2006 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(070.2590) Fourier optics and signal processing : ABCD transforms
(090.0090) Holography : Holography
(100.6890) Image processing : Three-dimensional image processing
(180.3170) Microscopy : Interference microscopy

ToC Category:
Digital/Electronic Holographic Microscopy

History
Original Manuscript: May 13, 2005
Revised Manuscript: August 18, 2005
Manuscript Accepted: August 18, 2005

Virtual Issues
Vol. 1, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Frank Dubois, Natacha Callens, Catherine Yourassowsky, Mauricio Hoyos, Pascal Kurowski, and Olivier Monnom, "Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis," Appl. Opt. 45, 864-871 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-5-864


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T.-C. Poon and M. Motamedi, "Optical/digital incoherent image processing for extended depth of field," Appl. Opt. 26, 4612-4615 (1987).
  2. E. R. Dowski, Jr., and W. T. Cathey, "Extended depth of field through wave-front coding," Appl. Opt. 34, 1859-1866 (1995).
  3. U. Schnars and W. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
  4. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
  5. T. Zhang and I. Yamaguchi, "Three-dimensional microscopy with phase-shifting digital holography," Opt. Lett. 23, 1221-1223 (1998).
  6. M. Sebesta and M. Gustafsson, "Object characterization with refractometric digital Fourier holography," Opt. Lett. 30, 471-473 (2005). [CrossRef]
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase contrast imaging," Opt. Lett. 24, 291-293 (1999).
  8. F. Dubois, L. Joannes, and J.-C. Legros, "Improved three-dimensional imaging with digital holography microscope using a partial spatial coherent source," Appl. Opt. 38, 7085-7094 (1999).
  9. G. Indebetouw and P. Klysubun, "Spatiotemporal digital microholography," J. Opt. Soc. Am. A 18, 319-325 (2001).
  10. I. Yamaguchi, J.-I. Kato, S. Otha, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6186 (2001).
  11. D. Dirksena, H. Drostea, B. Kempera, H. Delerlea, M. Deiwick, H. H. Scheld, and G. von Bally, "Lensless Fourier holography for digital holographic interferometry on biological samples," Opt. Lasers Eng. 36, 241-249 (2001). [CrossRef]
  12. F. Dubois, C. Yourassowsky, and O. Monnom, "Microscopic en holographie digitale avec une source partiellement cohérente," in Imagerie et Photonique pour les Sciences du Vivant et la Médecine, M.Faupel, P.Smigielski, and R.Grzymala, eds. (Fontis Media, 2004), pp. 287-302.
  13. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005). [CrossRef]
  14. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, "Parameter-optimized digital holographic microscope for high-resolution living-cell analysis," Appl. Opt. 43, 6536-6544 (2004). [CrossRef]
  15. B. Skarman, K. Wozniac, and J. Becker, "Simultaneous 3D-PIV and temperature measurement using a new CCD based holographic interferometer," Flow Meas. Instrum. 7, 1-6 (1996). [CrossRef]
  16. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004). [CrossRef]
  17. T.-C. Poon and T. Kim, "Optical image recognition of three-dimensional objects," Appl. Opt. 38, 370-381 (1999).
  18. B. Javidi and E. Tajahuerce, "Three-dimensional object recognition by use of digital holography," Opt. Lett. 25, 610-612 (2000).
  19. F. Dubois, C. Minetti, O. Monnom, C. Yourassowsky, and J.-C. Legros, "Pattern recognition with digital holographic microscope working in partially coherent illumination," Appl. Opt. 41, 4108-4119 (2002).
  20. E. Cuche, P. Marquet, and C. Despeuringe, "Aperture apodization using cubic spline interpolation: application in digital holography microscopy," Opt. Commun. 182, 59-69 (2000). [CrossRef]
  21. F. Dubois, O. Monnom, C. Yourassowsky, and J.-C. Legros, "Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies," Appl. Opt. 41, 2621-2626 (2002).
  22. S.-G. Kim, B. Lee, and E.-S. Kim, "Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram," Appl. Opt. 36, 4784-4791 (1997).
  23. T.-C. Poon, T. Kim, G. Indebetouw, M. H. Wu, K. Shinoda, and Y. Suzuki, "Twin-image elimination experiments for three-dimensional images in optical scanning holography," Opt. Lett. 25, 215-217 (2000).
  24. P. Klysubun and G. Indebetouw, "A posteriori processing of spatiotemporal digital microholograms," J. Opt. Soc. Am. A 18, 326-331 (2001).
  25. T. Kim, T.-C. Poon, and G. Indebetouw, "Depth detection and image recovery in remote sensing by optical scanning holography," Opt. Eng. 41, 1331-1338 (2002). [CrossRef]
  26. C. S. Vikram, Particle Field Holography (Cambridge U. Press, 1992).
  27. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002).
  28. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, "Tracking particles in four dimensions with in-line holographic microscopy," Opt. Lett. 28, 164-166 (2003).
  29. S. Coëtmellec, D. Lebrun, and C. Özkul, "Characterization of diffraction patterns directly from in-line holograms with the fractional Fourier transform," Appl. Opt. 41, 312-319 (2002).
  30. L. Repetto, E. Piano, and C. Pontiggia, "Lensless digital holographic microscope with light-emitting diode illumination," Opt. Lett. 29, 1132-1134 (2004). [CrossRef]
  31. F. Dubois, M.-L. Novella Requena, C. Minetti, O. Monnom, and E. Istasse, "Partial spatial coherence effects in digital holographic microscopy with a laser source," Appl. Opt. 43, 1131-1139 (2004). [CrossRef]
  32. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982).
  33. T. Kreis, "Digital holographic interference-phase measurement using the Fourier-transform method," J. Opt. Soc. Am. A 3, 847-855 (1986).
  34. J. C. Giddings, "A system based on split-flow lateral-transport thin (SPLITT) for rapid and continuous particle fractionation," Sep. Sci. Technol. 20, 749-768 (1985).
  35. P. S. Williams, "Particle trajectories in field-flow fractionation and SPLITT fractionation channels," Sep. Sci. Technol. 29, 11-45 (1994).
  36. D. Leighton and A. Acrivos, "Viscous resuspension," Chem. Eng. Sci. 41, 1377-1384 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited