OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 45, Iss. 5 — Feb. 10, 2006
  • pp: 968–974

Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography

Yasuhiro Awatsuji, Masaki Sasada, Atsushi Fujii, and Toshihiro Kubota  »View Author Affiliations


Applied Optics, Vol. 45, Issue 5, pp. 968-974 (2006)
http://dx.doi.org/10.1364/AO.45.000968


View Full Text Article

Enhanced HTML    Acrobat PDF (877 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography. Parallel quasi-phase-shifting digital holography is a technique capable of noiseless instantaneous measurement of three-dimensional objects, and it implements four kinds of phase shifting at a time with an array of 2 × 2 phase-shifting devices located in the reference wave. In the phase-shifting calculation in the reconstruction process of the technique, the scheme assigns the 2 × 2 cell configuration for each pixel in the vertical direction and for each 1-pixel interval in the horizontal direction of the hologram recorded by the image sensor. We conduct both a numerical simulation and a preliminary experiment. The results show that the proposed scheme can improve the quality of the reconstructed image calculated by the conventional scheme of parallel quasi-phase-shifting digital holography we previously proposed, and then the effectiveness of the proposed scheme is verified.

© 2006 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(090.2880) Holography : Holographic interferometry
(100.3010) Image processing : Image reconstruction techniques
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Applications

History
Original Manuscript: May 11, 2005
Manuscript Accepted: July 25, 2005

Citation
Yasuhiro Awatsuji, Masaki Sasada, Atsushi Fujii, and Toshihiro Kubota, "Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography," Appl. Opt. 45, 968-974 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-5-968


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948). [CrossRef] [PubMed]
  2. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with diffused illumination and three-dimensional objects," J. Opt. Soc. Am. 54, 1295-1301 (1964). [CrossRef]
  3. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, "Reconstruction of a hologram with a computer," Sov. Phys. Tech. Phys. 17, 333-334 (1972).
  4. L. Onural and P. D. Scott, "Digital recording of in-line holograms," Opt. Eng. 26, 1124-1132 (1987).
  5. U. Schnars, "Direct phase determination in hologram interferometry with use of digitally recorded holograms," J. Opt. Soc. Am. A 11, 2011-2015 (1994). [CrossRef]
  6. G. Pedrini, B. Pfister, and H. Tiziani, "Digital double-pulsed holographic interferometry for vibration," J. Mod. Opt. 40, 367-374 (1995). [CrossRef]
  7. G. Pedrini and H. J. Tiziani, "Quantitative evaluation of two-dimensional dynamic deformations using digital holography," Opt. Lasers Eng. 29, 249-256 (1997). [CrossRef]
  8. G. Pedrini, P. Froning, H. Fessler, and H. J. Tiziani, "Transient vibration measurements using multipulse digital holography," Opt. Lasers Eng. 29, 505-511 (1997).
  9. G. Pedrini, P. Froning, H. Fessler, and H. J. Tiziani, "In-line digital holographic interferometry," Appl. Opt. 37, 6262-6269 (1998). [CrossRef]
  10. G. Indebetouw and P. Klysubun, "Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography," Opt. Lett. 25, 212-214 (2000). [CrossRef]
  11. Z. Liu, G. J. Steckman, and D. Psaltis, "Holographic recording of fast phenomena," Appl. Phys. Lett. 80, 731-733 (2002). [CrossRef]
  12. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, "Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time," Opt. Lett. 28, 1257-1259 (2003). [CrossRef] [PubMed]
  13. Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, "Deformation measurement by phase-shifting digital holography," Exp. Mech. 45, 65-70 (2005). [CrossRef]
  14. S. Murata and N. Yasuda, "Potential of digital holography in particle measurement," Opt. Laser Technol. 32, 567-574 (2000). [CrossRef]
  15. S. Coetmellec, D. Lebrun, and C. Ozkul, "Application of the two-dimensional fractional-order Fourier transformation to particle field digital holography," J. Opt. Soc. Am. A 19, 1537-1546 (2002). [CrossRef]
  16. D. Lebrun, A. M. Benkouider, S. Coetmellec, and M. Malek, "Particle field digital holographic reconstruction in arbitrary tilted planes," Opt. Express 11, 224-229 (2003). [CrossRef] [PubMed]
  17. G. Pan and H. Meng, "Digital holography of particle fields: reconstruction by use of complex amplitude," Appl. Opt. 42, 827-833 (2003). [CrossRef] [PubMed]
  18. M. Hui, P. Gang, P. Ye, and S. H. Woodward, "Holographic particle image velocimetry: from film to digital recording," Meas. Sci. Technol. 15, 673-685 (2004). [CrossRef]
  19. C. Fournier, C. Ducottet, and T. Fournel, "Digital in-line holography: influence of the reconstruction on the axial profile of a reconstructed particle image," Meas. Sci. Technol. 15, 686-693 (2002). [CrossRef]
  20. M. Malek, D. Allano, S. Coetmellec, C. Ozkul, and D. Lebrun, "Digital in-line holography for three-dimensional-two-components particle tracking velocimetry," Meas. Sci. Technol. 15, 699-705 (2004). [CrossRef]
  21. J. Müller, V. Kebbel, and W. Jüptner, "Characterization of spatial particle distributions in a spray-forming process using digital holography," Meas. Sci. Technol. 15, 706-710 (2004). [CrossRef]
  22. J. M. Coupland, "Holographic particle image velocimetry: signal recovery from under-sampled CCD data," Meas. Sci. Technol. 15, 711-717 (2004). [CrossRef]
  23. F. Dubois, L. Joannes, and J.-C. Legros, "Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999). [CrossRef]
  24. G. Indebetouw and P. Klysubun, "Space-time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence," Appl. Phys. Lett. 75, 2017-2019 (1999). [CrossRef]
  25. G. Pedrini, S. Schedin, and H. J. Tiziani, "Spatial filtering in digital holographic microscopy," J. Mod. Opt. 47, 1447-1454 (2000). [CrossRef]
  26. S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, "The determination of material parameters of microcomponents using digital holography," Opt. Lasers Eng. 36, 103-126 (2001). [CrossRef]
  27. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. U.S.A. 98, 11301-11305 (2001). [CrossRef] [PubMed]
  28. L. Xu, X. Peng, J. Miao, and A. K. Asundi, "Studies of digital microscopic holography with applications to microstructure testing," Appl. Opt. 40, 5046-5051 (2001). [CrossRef]
  29. G. Pedrini and S. Schedin, "Short coherence digital holography for 3D microscopy," Optik (Stuttgart) 112, 427-432 (2001). [CrossRef]
  30. G. Pedrini and H. J. Tiziani, "Short-coherence digital microscopy by use of a lensless holographic imaging system," Appl. Opt. 41, 4489-4496 (2002). [CrossRef] [PubMed]
  31. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, "Super-resolution digital holographic imaging method," Appl. Phys. Lett. 81, 3143-3145 (2002). [CrossRef]
  32. P. Guo and A. J. Devaney, "Digital microscopy using phase-shifting digital holography with two reference waves," Opt. Lett. 29, 857-859 (2004). [CrossRef] [PubMed]
  33. L. Repetto, E. Piano, and C. Pontiggia, "Lensless digital holographic microscope with diode illumination," Opt. Lett. 29, 1132-1134 (2004). [CrossRef] [PubMed]
  34. M. Gustafsson and M. Sebesta, "Refractometry of microscopic objects with digital holography," Appl. Opt. 43, 4796-4801 (2004). [CrossRef] [PubMed]
  35. A. Stadelmaier and J. H. Massig, "Compensation of lens aberrations in digital holography," Opt. Lett. 25, 1630-1632 (2000). [CrossRef]
  36. S. De Nicola, P. Ferraro, A. Finizio, and G. Plerattini, "Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography," Opt. Lasers Eng. 37, 331-340 (2002). [CrossRef]
  37. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Plerattini, "Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging," Appl. Opt. 42, 1938-1946 (2003). [CrossRef] [PubMed]
  38. B. Javidi and E. Tajahuerce, "Three-dimensional object recognition by use of digital holography," Opt. Lett. 25, 610-612 (2000). [CrossRef]
  39. E. Tajahuerce, O. Matoba, and B. Javidi, "Shift-invariant three-dimensional object recognition by means of digital holography," Appl. Opt. 40, 3877-3886 (2001). [CrossRef]
  40. Y. Frauel and B. Javidi, "Neural network for three-dimensional object recognition based on digital holography," Opt. Lett. 26, 1478-1480 (2001). [CrossRef]
  41. Y. Frauel, E. Tajahuerce, M. Castro, and B. Javidi, "Distortion-tolerant three-dimensional object recognition with digital holography," Appl. Opt. 40, 3887-3893 (2001). [CrossRef]
  42. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, "Compression of digital holograms for three-dimensional object reconstruction and recognition," Appl. Opt. 41, 4124-4132 (2002). [CrossRef] [PubMed]
  43. B. Zhu, H. Zhao, and S. Liu, "Three-dimensional transparent objects recognition based on the digital holography and fractional correlator," Optik (Stuttgart) 113, 209-212 (2002). [CrossRef]
  44. Y. Frauel, E. Tajahuerce, O. Matoba, M. Castro, and B. Javidi, "Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition," Appl. Opt. 43, 452-462 (2004). [CrossRef] [PubMed]
  45. B. Javidi and T. Nomura, "Securing information by use of digital holography," Opt. Lett. 25, 28-30 (2000). [CrossRef]
  46. E. Tajahuerce and B. Javidi, "Encrypting three-dimensional information with digital holography," Appl. Opt. 39, 6595-6601 (2000). [CrossRef]
  47. S. Lai and M. A. Neifeld, "Digital wavefront reconstruction and its application to image encryption," Opt. Commun. 178, 283-289 (2000). [CrossRef]
  48. O. Matoba and B. Javidi, "Optical retrieval of encrypted digital holograms for secure real-time display," Opt. Lett. 27, 321-323 (2002). [CrossRef]
  49. O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, "Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram," Appl. Opt. 41, 6187-6192 (2002). [CrossRef] [PubMed]
  50. L. Yu and L. Cai, "Multidimensional data encryption with digital holography," Opt. Commun. 215, 271-284 (2003). [CrossRef]
  51. S. Kishk and B. Javidi, "Watermarking of three-dimensional objects by digital holography," Opt. Lett. 28, 167-169 (2003). [CrossRef] [PubMed]
  52. S. Kishk and B. Javidi, "3D object watermarking by a 3D hidden object," Opt. Express 11, 874-888 (2003). [CrossRef] [PubMed]
  53. B. Zhu, H. Zhao, and S. Liu, "Image encryption based on pure intensity random coding and digital holography technique," Optik (Stuttgart) 114, 95-99 (2003). [CrossRef]
  54. L. Yu and L. Cai, "Data encryption by disarranging the holographic information with rotated holograms," Optik (Stuttgart) 114, 497-503 (2003). [CrossRef]
  55. N. K. Nishchal, J. Joseph, and K. Singh, "Securing information using fractional Fourier transform in digital holography," Opt. Commun. 235, 253-259 (2004). [CrossRef]
  56. N. K. Nishchal, J. Joseph, and K. Singh, "Fully phase encryption using digital holography," Opt. Eng. 235, 2959-2966 (2004). [CrossRef]
  57. See, for example, J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  58. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  59. T. Zhang and I. Yamaguchi, "Three-dimensional microscopy with phase-shifting digital holography," Opt. Lett. 23, 1221-1223 (1998). [CrossRef]
  60. I. Yamaguchi, J. Kato, and S. Ohta, "Surface shape measurement by phase-shifting digital holography," Opt. Rev. 8, 85-89 (2001). [CrossRef]
  61. I. Yamaguchi, S. Ohta, and J. Kato, "Surface contouring by phase-shifting digital holography," Opt. Lasers Eng. 36, 417-428 (2001). [CrossRef]
  62. I. Yamaguchi, S. Ohta, and J. Kato, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6186 (2001). [CrossRef]
  63. I. Yamaguchi, T. Matsumura, and J. Kato, "Phase-shifting color digital holography," Opt. Lett. 27, 1108-1110 (2002). [CrossRef]
  64. U. Schnars and W. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  65. Y. Takaki, H. Kawai, and H. Ohzu, "Hybrid-holographic microscopy free of conjugate and zero-order images," Appl. Opt. 38, 4990-4996 (1999). [CrossRef]
  66. E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000). [CrossRef]
  67. Y. Zhang, Q. Lu, and B. Ge, "Elimination of zero-order diffraction in digital off-axis holography," Opt. Commun. 240, 261-267 (2004). [CrossRef]
  68. Y. Awatsuji, M. Sasada, and T. Kubota, "Parallel quasi-phase-shifting digital holography," Appl. Phys. Lett. 85, 1069-1071 (2004). [CrossRef]
  69. B. Javidi and F. Okano, eds., Three-Dimensional Television, Video, and Display Technologies (Springer-Verlag, 2002).
  70. T. M. Kreis and W. P. O. Jüptner, "Suppression of the dc term in digital holography," Opt. Eng. 37, 2357-2360 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited