OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 45, Iss. 5 — Feb. 10, 2006
  • pp: 993–999

Continuous monitoring of a surface slope by real-time shearing interferometry with a photorefractive crystal

Gilles Pauliat and Gérald Roosen  »View Author Affiliations


Applied Optics, Vol. 45, Issue 5, pp. 993-999 (2006)
http://dx.doi.org/10.1364/AO.45.000993


View Full Text Article

Enhanced HTML    Acrobat PDF (113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a new technique for measuring the temporal variations of the surface slope of an object. This real-time shearometric arrangement takes advantage of the dynamic properties of holograms in photorefractive crystals. The accuracy of the measurements should make this technique suitable for real-time structural intensity determinations.

© 2006 Optical Society of America

OCIS Codes
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 21, 2005
Revised Manuscript: July 29, 2005
Manuscript Accepted: July 29, 2005

Citation
Gilles Pauliat and Gérald Roosen, "Continuous monitoring of a surface slope by real-time shearing interferometry with a photorefractive crystal," Appl. Opt. 45, 993-999 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-5-993


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Huignard and J. P. Herriau, "Real-time double-exposure interferometry with Bi12GeO20 crystals in transverse electrooptic configuration," Appl. Opt. 16, 1807-1809 (1977). [CrossRef] [PubMed]
  2. T. Sato, T. Hatsusawa, and O. Ikeda, "Dynamic interferometric observation of differential movement," Appl. Opt. 22, 3895-3897 (1983). [CrossRef] [PubMed]
  3. A. A. Kamshilin and M. P. Petrov, "Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals," Opt. Commun. 53, 23-26 (1985). [CrossRef]
  4. A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, "Adaptive holographic interferometers operating through self-diffraction of recording beams in photorefractive crystals," Opt. Eng. 28, 580-585 (1989).
  5. R. Magnusson, X. Wang, A. Hafiz, T. D. Black, L. N. Tello, A. Haji-Sheikh, S. Konecni, and D. Wilson, "Experiments with photorefractive crystals for holographic interferometry," Opt. Eng. 33, 596-607 (1994). [CrossRef]
  6. H. Rohleder, P. M. Petersen, and A. Marrakchi, "Quantitative measurement of the vibrational amplitude and phase in photorefractive time-average interferometry: a comparison with electronic speckle pattern interferometry," J. Appl. Phys. 76, 81-84 (1995). [CrossRef]
  7. L. Labrunie, G. Pauliat, J. C. Launay, S. Leidenbach, and G. Roosen, "Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal," Opt. Commun. 140, 119-127 (1997). [CrossRef]
  8. F. Rickermann, S. Riehemann, and G. von Bally, "Utilization of photorefractive crystals for holographic double-exposure interferometry with nanosecond laser pulses," Opt. Commun. 155, 91-98 (1998). [CrossRef]
  9. Ph. Delaye, A. Blouin, D. Drolet, L. A. de Montmorillon, G. Roosen, and J. P. Monchalin, "Detection of ultrasonic motion of a scattering surface using photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1733 (1997). [CrossRef]
  10. M. P. Georges and P. C. Lemaire, "Real-time stroboscopic holographic enhancement using sillenite crystals for the quantitative analysis of vibrations," Opt. Commun. 145, 249-247 (1998). [CrossRef]
  11. J. A. Leendertz and J. N. Butters, "An image-shearing speckle-pattern interferometer for measuring bending moments," J. Phys. E: Sci. Instrum. 3, 1107-1110 (1973). [CrossRef]
  12. Y. Y. Hung, "Shearography: a new optical method for strain measurement and nondestructive testing," Opt. Eng. 21, 391-395 (1982).
  13. N. K. Mohan and P. Rastogi, "Recent development in digital speckle pattern interferometry," Opt. Lasers Eng. 40, 339-444 (2003). [CrossRef]
  14. D. U. Noiseux, "Measurement of power flow in uniform beams and plates," J. Acoust. Soc. Am. 47, 238-247 (1970). [CrossRef]
  15. G. Pavic, "Measurement of structure borne wave intensity, part I: Formulation of the methods," J. Sound Vib. 49, 221-230 (1976). [CrossRef]
  16. J. P. Chambard, V. Chalvidant, X. Carniel, and J.-C. Pascal, "Pulsed TV-holography recording for vibration analysis applications," Opt. Lasers Eng. 38, 131-143 (2002). [CrossRef]
  17. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive crystals in coherent optical systems, Vol. 59 of Springer Series in Optical Sciences (Springer-Verlag, 1991).
  18. J. P. Huignard and A. Marrakchi, "Two-wave mixing and energy transfer in Bi12SiO20 crystals: application to image amplification and vibration analysis," Opt. Lett. 6, 622-624 (1981). [CrossRef] [PubMed]
  19. Ph. Delaye, L. A. de Montmorillon, and G. Roosen, "Transmission of time modulated optical signals through an absorbing photorefractive crystal," Opt. Commun. 118, 154-164 (1995). [CrossRef]
  20. J. C. Launay, Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux I, France (personal communication, 1998).
  21. N. A. Korneev and S. I. Stepanov, "Dynamic self-diffraction of laterally vibrating speckle patterns in photorefractive crystals," Optik 91, 61-65 (1992).
  22. A. A. Kamshilin, K. Paivasaari, N. I. Nazhestkina, V. V. Prokofiev, S. Ashihara, Y. Lida, T. Shimura, and K. Kuroda, "Adaptive correlation filters for speckle patterns in photorefractive crystals," Appl. Phys. B 68, 1031-1038 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited