OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 6 — Feb. 20, 2006
  • pp: 1142–1147

Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography

Shuichi Makita, Yoshiaki Yasuno, Takashi Endo, Masahide Itoh, and Toyohiko Yatagai  »View Author Affiliations


Applied Optics, Vol. 45, Issue 6, pp. 1142-1147 (2006)
http://dx.doi.org/10.1364/AO.45.001142


View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Jones matrix imaging of biological samples by a polarization-sensitive Fourier-domain optical coherence tomography has been demonstrated using a two-dimensional CCD camera to obtain two spectra corresponding to the orthogonal polarization components simultaneously.The measurement results of a quarter-wave plate are compared between the two incident polarization sets, H-V linear and R-L circular polarization. Jones matrix imaging of the bovine tendon is demonstrated. Measured Jones matrix images are converted to equivalent Müller matrix images. Local polarization properties are obtained by longitudinal differentiation of Jones matrix components. The layered structure of the bovine tendon and birefringence are revealed.

© 2006 Optical Society of America

OCIS Codes
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 7, 2005
Manuscript Accepted: September 15, 2005

Virtual Issues
Vol. 1, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Shuichi Makita, Yoshiaki Yasuno, Takashi Endo, Masahide Itoh, and Toyohiko Yatagai, "Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography," Appl. Opt. 45, 1142-1147 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-6-1142


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. G. Häusler and M. W. Lindner, "Coherence radar and spectral radar--new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  3. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003). [CrossRef] [PubMed]
  4. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  5. P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Häusler, "Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin," Proc. SPIE 3567, 78-87 (1999). [CrossRef]
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain versus time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsexpress.org. [CrossRef] [PubMed]
  7. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992). [CrossRef]
  8. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997). [CrossRef] [PubMed]
  9. L. V. Wang and Gang Yao, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999). [CrossRef]
  10. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002). [CrossRef]
  11. S. Jiao and L. V. Wang, "Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002). [CrossRef] [PubMed]
  12. S. Jiao, G. Yao, and L. V. Wang, "Depth-resolved two-dimensional stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography," Appl. Opt. 39, 6318-6324 (2000). [CrossRef]
  13. Y. Yasuno, S. Makita, T. Endo, M. Itoh, and T. Yatagai, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004). [CrossRef]
  14. M. Todorovic, S. Jiao, L. V. Wang, and G. Stoica, "Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography," Opt. Lett. 29, 2402-2404 (2004). [CrossRef] [PubMed]
  15. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004), http://www.opticsexpress.org. [CrossRef] [PubMed]
  17. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). [CrossRef]
  18. J. Schmit and K. Creath, "Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry," Appl. Opt. 34, 3610-3619 (1995). [CrossRef] [PubMed]
  19. F. L. Roy-Brehonnet and B. L. Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron. 21, 109-151 (1997). [CrossRef]
  20. C. Whitney, "Pauli-Algebraic operators in polarization optics," J. Opt. Soc. Am. 61, 1207-1213 (1971). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited