OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 6 — Feb. 20, 2006
  • pp: 1153–1161

High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate

K. J. Moh, X.-C. Yuan, W. C. Cheong, L. S. Zhang, J. Lin, B. P. S. Ahluwalia, and H. Wang  »View Author Affiliations


Applied Optics, Vol. 45, Issue 6, pp. 1153-1161 (2006)
http://dx.doi.org/10.1364/AO.45.001153


View Full Text Article

Enhanced HTML    Acrobat PDF (2056 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose using a solitary kinoform-type spiral phase plate structure to generate an array of vortices located in a single beam. Kinoform-type spiral surfaces allow each wavelength component of the phase modulation value to be wrapped back to its 2 π equivalent for optical vortices of high charge. This allows the surface-relief profiles of high-charge vortices to be microfabricated with the same physical height as spiral phase plates of unity-charged optical vortices. The m-charged optical vortex obtained interacts with the inherent coherent background, which changes the propagation dynamics of the optical vortex and splits the initial m charge into | m | unity-charged optical vortices within the same beam. Compared to a hologram, a multistart spiral phase plate is more efficient in the use of available spatial frequencies and beam energy and also is computationally less demanding. Furthermore, using microfabrication techniques will allow for greater achievable tolerances in terms of smaller feature sizes.

© 2006 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(100.5090) Image processing : Phase-only filters
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: April 28, 2005
Revised Manuscript: September 3, 2005
Manuscript Accepted: September 11, 2005

Citation
K. J. Moh, X.-C. Yuan, W. C. Cheong, L. S. Zhang, J. Lin, B. P. S. Ahluwalia, and H. Wang, "High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate," Appl. Opt. 45, 1153-1161 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-6-1153


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London Ser. A 336, 165-190 (1974). [CrossRef]
  2. N. B. Baranova, A. V. Mamaev, N. F. Pilipetskii, V. V. Shkunov, and B. Ya. Zel'dovich, "Wavefront dislocations: topological limitations for adaptive systems with phase conjugation," J. Opt. Soc. Am. 73, 525-528 (1983). [CrossRef]
  3. A. G. White, C. P. Smith, N. R. Heckenberg, H. Rubinsztein-Dunlop, R. McDuff, C. O. Weiss, and Chr. Tamm, "Interferometric measurements of phase singularities in the output of a visible laser," J. Mod. Opt. 38, 2531-2541 (1991). [CrossRef]
  4. M. Harris, C. A. Hill, and J. M. Vaughan, "Optical helices and spiral interference fringes," Opt. Commun. 106, 161-166 (1994). [CrossRef]
  5. D. Y. Tang, N. R. Heckenberg, and C. O. Weiss, "Phase dependent helical pattern formation in a laser," Opt. Commun. 114, 95-100 (1995). [CrossRef]
  6. G. A. Swartzlander, Jr., and C. T. Law, "Optical vortex solitons observed in Kerr nonlinear media," Phys. Rev. Lett. 69, 2503-2506 (1992). [CrossRef] [PubMed]
  7. I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, "Optics of light beams with screw dislocations," Opt. Commun. 103, 422-428 (1993). [CrossRef]
  8. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, "Optical wavefront dislocations and their properties," Opt. Commun. 119, 604-612 (1993). [CrossRef]
  9. L. Allen, M. Babiker, W. K. Lai, and V. E. Lembessis, "Atom dynamics in multiple Laguerre-Gaussian beams," Phys. Rev. A 54, 4259-4270 (1996). [CrossRef] [PubMed]
  10. K. T. Gahagan and G. A. Swartzlander, Jr., "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  11. G. A. Swartzlander, Jr., D. L. Drugan, N. Hallak, M. O. Freeman, and C. T. Law, "Optical transistor effect using an optical vortex soliton," Laser Phys. 5, 704-709 (1995).
  12. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  13. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1996). [CrossRef]
  14. M. J. Padgett and L. Allen, "Orbital angular momentum exchange in cylindrical-lens mode converters," J. Opt. B Quantum Semiclass. Opt. 4, S17-S19 (2002). [CrossRef]
  15. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with high-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217-223 (1995). [CrossRef]
  16. J. E. Curtis and D. G. Grier, "Modulated optical vortices," Opt. Lett. 28, 872-874 (2003). [CrossRef] [PubMed]
  17. J. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90, 133901 (2003). [CrossRef] [PubMed]
  18. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phase plate," Opt. Commun. 112, 321-327 (1994). [CrossRef]
  19. S. S. R. Oemrawsingh, E. R. Elie, J. P. Woerdman, E. J. K. Verstegen, J. G. K. Loosterboer, and G. W't Hooft, "Half-integral spiral phase plates for optical wavelengths," J. Opt. A Pure Appl. Opt. 6, S288-S290 (2004). [CrossRef]
  20. G.-H. Kim, J.-H. Jeon, K.-H. Ko, H.-J. Moon, J.-H. Lee, and J. S. Chang, "Optical vortices produced with a nonspiral phase plate," Appl. Opt. 36, 8614-8621 (1997). [CrossRef]
  21. W. C. Cheong, W. M. Lee, X.-C. Yuan, K. Dholakia, L. S. Zhang, and H. Wang, "Direct electron beam writing of continuous spiral phase plates in SU-8 with high power efficiency for optical manipulation," Appl. Phys. Lett. 85, 5784-5786 (2004). [CrossRef]
  22. T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, "Generation of a doughnut-shaped beam using a spiral phase plate," Rev. Sci. Instrum. 75, 5131-5135 (2004). [CrossRef]
  23. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, "Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses," Opt. Express 12, 3548-3553 (2004). [CrossRef] [PubMed]
  24. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, "Topological charge and angular momentum of light beams carrying optical vortices," Phys. Rev. A 56, 4064-4075 (1997). [CrossRef]
  25. D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., "Propagation dynamics of optical vortices," J. Opt. Soc. Am. B 14, 3054-3064 (1997). [CrossRef]
  26. I. D. Maleev and G. A. Swartzlander, Jr., "Composite optical vortices," J. Opt. Soc. Am. B 20, 1169-1176 (2003). [CrossRef]
  27. D. Rozas, Z. S. Sacks, and G. A. Swartzlander, Jr., "Experimental observation of fluidlike motion of optical vortices," Phys. Rev. Lett. 79, 3399-3402 (1997). [CrossRef]
  28. D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics; Design Fabrication and Test (SPIE Press, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited