OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 6 — Feb. 20, 2006
  • pp: 1275–1287

Multiwavelength discrimination and measurements of a two-gas mixture by use of a broadly tunable mid-infrared semiconductor laser

Chuan Peng, Han Q. Le, Rui Q. Yang, and Cory J. Hill  »View Author Affiliations


Applied Optics, Vol. 45, Issue 6, pp. 1275-1287 (2006)
http://dx.doi.org/10.1364/AO.45.001275


View Full Text Article

Enhanced HTML    Acrobat PDF (2271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectroscopic detection of gases can be achieved by measuring a few species-specific absorption lines, requiring very accurate wavelength control. Alternatively, it can be achieved by using many wavelengths spread over a wide range; each wavelength need not be optimal spectroscopically, but all collectively form a unique fingerprint for the species of interest. Statistical regression can be used to quantify their concentrations. An experimental evaluation of this concept involved using a 3.1 μm broadly tunable Sb-based mid-IR laser to discriminate and measure mixtures of acetylene and water vapor with absorption spectral overlaps. As many as 30 wavelengths from 3200 to 3280   cm 1 were used to measure 5 × 5 combinations of the two-gas concentration. Statistical analysis of the results validates the concept. Each gas concentration was consistently and reliably measured without any problem of interference from the other. In addition, the method was sufficiently sensitivite to detect unusual discrepancies by use of statistical analysis. Optimization of the system's detection capability and its receiver-operating characteristics is demonstrated. The results suggest that the statistical multiwavelength broadband approach to detection of gas mixture can be a highly effective alternative to species-specific single-line spectroscopy.

© 2006 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(280.3420) Remote sensing and sensors : Laser sensors
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Spectroscopy

History
Original Manuscript: July 21, 2005
Revised Manuscript: August 28, 2005
Manuscript Accepted: September 16, 2005

Citation
Chuan Peng, Han Q. Le, Rui Q. Yang, and Cory J. Hill, "Multiwavelength discrimination and measurements of a two-gas mixture by use of a broadly tunable mid-infrared semiconductor laser," Appl. Opt. 45, 1275-1287 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-6-1275


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Mamjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, "Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser," Opt. Lett. 23, 219-221 (1998).
  2. M. W. Sigrist, M. Nägele, and A. Romann, "Infrared laser spectroscopy for trace gas analysis," in 4th Iberioamerican Meeting on Optics and 7th Latin American Meeting on Optics, Lasers, and their Applications, V. L. Brudny, S. A. Ledesma, and M. C. Marconi, eds., Proc. SPIE 4419, 14-17 (2001). [CrossRef]
  3. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, "Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer," Appl. Phys. B 75, 343-350 (2002). [CrossRef]
  4. D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, "Mid-infrared trace-gas sensing with a quasicontinuous-wave Peltier-cooled distributed feedback quantum cascade laser," Appl. Phys. B 79, 907-913 (2004). [CrossRef]
  5. M. G. Allen, D. J. Cook, B. K. Decker, J. M. Hensley, D. I. Rosen, M. L. Silva, D. M. Sonnenfroh, and R. T. Wainner, "In-situ and stand-off sensing using QC/IC laser technology from 3-100 microns," in Quantum Sensing and Nanophotonic Devices II, M. Razeghi and G. J. Brown, eds., Proc. SPIE 5732, 134-139 (2005). [CrossRef]
  6. R. Kormann, R. Königstedt, U. Parchatka, J. Lelieveld, and H. Fischer, "QUALITAS: a mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in cw operation," Rev. Sci. Instrum. 76, 075102 (2005). [CrossRef]
  7. J. R. Quagliano, P. O. Stoutland, R. R. Petrin, R. K. Sander, R. J. Romero, M. C. Whitehead, R. Quick, J. J. Tiee, and L. J. Jolin, "Quantitative chemical identification of four gases in remote infrared (9-11 µm) differential adsorption lidar experiments," Appl. Opt. 36, 1915-1927 (1997).
  8. D. C. Senft, M. J. Fox, C. M. Hamilton, D. A. Richter, N. S. Higdon, and B. T. Kelly, "Performance characterization and ground testing of an airborne CO2 differential absorption lidar system (Phase II)," in Laser Radar Technology and Applications IV, G. W. Kamerman and C. Werner, eds. Proc. SPIE 3707, 165-176 (1999). [CrossRef]
  9. C. R. Swim, "Review of active chem-bio sensing," in Chemical and Biological Sensing V, P. J. Gardner; ed., Proc. SPIE 5416, 178-185 (2004). [CrossRef]
  10. M. E. Webber, M. Pushkarsky, and C. K. N. Patel, "Optical detection of chemical warfare agents and toxic industrial chemicals: simulation," J. Appl. Phys. 97, 113101 (2005). [CrossRef]
  11. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001). [CrossRef]
  12. G. Luo, C. Peng, H. Q. Le, S. S. Pei, H. Lee, W.-Y. Hwang, B. Ishang, and J. Zheng. "Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers," IEEE J. Quantum Electron. 38, 486-494 (2002). [CrossRef]
  13. C. Peng, G. P. Luo, and H. Q. Le, "Broadband, continuous, and fine-tune properties of external-cavity thermoelectric-stabilized mid-infrared quantum-cascade lasers," Appl. Opt. 42, 4877-4882 (2003).
  14. C. Peng, H. L. Zhang, and H. Q. Le, "Mid-infrared external-cavity two-segment quantum-cascade laser," Appl. Phys. Lett. 83, 4098-4100 (2003). [CrossRef]
  15. M. Nagele and M. W. Sigrist, "Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing," Appl. Phys. B 70, 895-900 (2000).
  16. M. B. Pushkarsky, M. E. Weber, and C. K. N. Patel, "Ultra-sensitive ambient ammonia detection using CO2 laser based photoacoustic spectroscopy," Appl. Phys. B 77, 381-385 (2003). [CrossRef]
  17. A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, "Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region," Appl. Phys. B 80, 133-138 (2005). [CrossRef]
  18. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  19. B. Bakowski, I. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, "Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser," Appl. Phys. B 75, 745-750 (2002). [CrossRef]
  20. Y. He and B. J. Orr, "Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser," Appl. Phys. B 79, 941-945 (2004). [CrossRef]
  21. See, e.g., G. A. F. Seber and A. J. Lee, Linear Regression Analysis (Wiley, 2003).
  22. C. J. Hill and R. Q. Yang, "MBE growth optimization of Sb-based interband cascade lasers," J. Crys. Growth 278, 167-172 (2005). [CrossRef]
  23. R. Q. Yang, C. J. Hill, L. E. Christensen, and C. R. Webster, "Mid-IR type-II interband cascade lasers and their applications," in Semiconductor and Organic Optoelectronic Materials and Devices, C. E. Zah, Y. Luo, and S. Tsuji, eds., Proc. SPIE 5624, 413-422 (2005), and references therein. [CrossRef]
  24. See, e.g., D. A. Belsley, E. Kuh, and R. E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited