OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 7 — Mar. 1, 2006
  • pp: 1507–1514

Antireflection design concepts with equivalent layers

Uwe B. Schallenberg  »View Author Affiliations


Applied Optics, Vol. 45, Issue 7, pp. 1507-1514 (2006)
http://dx.doi.org/10.1364/AO.45.001507


View Full Text Article

Enhanced HTML    Acrobat PDF (152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Some novel concepts of designing antireflection (AR) coatings with equivalent layers are presented. As an introduction, essential papers concerning thin-film optics and AR designs are cited, and the AR problem and a previously introduced AR-hard design type are discussed. Based on the known matrix formalism, a potential AR region, an equivalent stack index, and an equivalent substrate index are defined to use the theory of stop-band suppression as a starting point for the design of broadband AR coatings. The known multicycle AR design type is identified as a typical solution to the AR problem if the presented approach is used.

© 2006 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(310.1210) Thin films : Antireflection coatings

ToC Category:
Design of Optical Coatings

History
Original Manuscript: March 2, 2005
Manuscript Accepted: July 22, 2005

Citation
Uwe B. Schallenberg, "Antireflection design concepts with equivalent layers," Appl. Opt. 45, 1507-1514 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-7-1507


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Strong, 'On a method of decreasing the reflection from nonmetallic substances,' J. Opt. Soc. Am. 26, 73-74 (1936). [CrossRef]
  2. W. Geffken, 'Überzug aus mindestens drei Schichten von verschiedener Brechungszahl für einen nicht-metallischen Gegenstand zur Verminderung von dessen Oberflächenreflexion,' German patent 758,767 (19 July 1940).
  3. A. Herpin, 'Calcul du pouvoir réflecteur d'un systèm stratifiè quelconque,' Acad. Sci. Paris , C. R. 225, 182-183 (1947).
  4. F. Abelés, 'Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Application aux couches minces,' Ann. Phys. 5, 596-640, 706-782 (1950).
  5. L. I. Epstein, 'The design of optical filters,' J. Opt. Soc. Am. 42, 806-810 (1952). [CrossRef]
  6. H. Pohlack, 'Die Synthese optischer Interferenzschichtsysteme mit vorgegebenen Eigenschaften,' in Jenaer Jahrbuch 1952 (1952), pp. 181-221.
  7. E. Delano, 'Fourier synthesis of multilayer filters,' J. Opt. Soc. Am. 57, 1529-1533 (1967). [CrossRef]
  8. L. Young, 'Synthesis of multiple antireflection films over a prescribed frequency band,' J. Opt. Soc. Am. 51, 967-974 (1961). [CrossRef]
  9. J. S. Seeley, 'Synthesis of interference filters,' Proc. Phys. Soc. London 78, 998-1008 (1961). [CrossRef]
  10. P. H. Berning, 'Use of equivalent films in the design of infrared multilayer antireflection coatings,' J. Opt. Soc. Am. 52, 431-436 (1962). [CrossRef]
  11. F. C. Rock, 'Antireflection coating and assembly having synthesized layer of index of refraction,' U.S. patent 3,432,225 (4 May 1964).
  12. A. Musset and A. Thelen, 'Multilayer antireflection coatings,' in Progress in Optics, E.Wolf, ed. (North-Holland, 1970), Vol. 8, pp. 203-237.
  13. A. Thelen, 'Multilayer filters with wide transmittance bands,' J. Opt. Soc. Am. 53, 1266-1270 (1963). [CrossRef]
  14. A. Thelen, 'Multilayer filters with wide transmittance bands, part II,' J. Opt. Soc. Am. 63, 65-68 (1973). [CrossRef]
  15. M. C. Ohmer, 'Design of three-layer equivalent films,' J. Opt. Soc. Am. 68, 137-139 (1978). [CrossRef]
  16. W. H. Southwell, 'Coating design using very thin high- and low-index layers,' Appl. Opt. 24, 457-3460 (1985). [CrossRef] [PubMed]
  17. H. Anders and R. Eichinger, 'Die optische Wirkung und die praktische Bedeutung inhomogener Schichten,' Appl. Opt. 4, 899-905 (1965). [CrossRef]
  18. R. Jacobsson and J. O. Martensson, 'Evaporated inhomogeneous thin films,' Appl. Opt. 5, 29-34 (1966). [CrossRef] [PubMed]
  19. J. A. Aguilera, J. Aguilera, P. Baumeister, A. Bloom, D. Coursen, J. A. Dobrowolski, F. T. Goldstein, D. E. Gustafson, and R. A. Kemp, 'Antireflection coatings for germanium IR optics: a comparison of numerical design methods,' Appl. Opt. 27, 2832-2840 (1988). [CrossRef] [PubMed]
  20. A. Thelen and R. Langfeld, 'Coating design contest: antireflection coating for lenses used with normal and infrared photographic film,' in Thin Film for Optical Systems, K.H.Guenther, ed., Proc. SPIE 1782, 551-601 (1993).
  21. P. G. Verly, J. A. Dobrowolski, and R. R. Willey, 'Fourier-transform method for the design of wideband anti-reflection coatings,' Appl. Opt. 31, 3836-3846 (1992). [CrossRef] [PubMed]
  22. P. G. Verly, A. V. Tikhonravov, and M. K. Trubetskov, 'Efficient refinement algorithm for the synthesis of inhomogeneous coatings,' Appl. Opt. 36, 1487-1495 (1997). [CrossRef] [PubMed]
  23. A. V. Tikhonravov and J. A. Dobrowolski, 'Quasi-optimal synthesis for antireflection coatings: a new method,' Appl. Opt. 32, 4265-4275 (1993). [CrossRef] [PubMed]
  24. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, 'Optimal single-band normal-incidence antireflection coatings,' Appl. Opt. 35, 644-658 (1996). [CrossRef] [PubMed]
  25. R. R. Willey, 'Predicting achievable design performance of broadband antireflection coatings,' Appl. Opt. 32, 5447-5451 (1993). [CrossRef] [PubMed]
  26. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, 'Application of the needle optimization technique to the design of optical coatings,' Appl. Opt. 35, 5493-5508 (1996). [CrossRef] [PubMed]
  27. U. B. Schallenberg, S. Jakobs, and N. Kaiser, 'Analytical design of multicycle broadband AR coatings,' in Advances in Optical Interference Coatings, C.Amra and A.Macleod, eds., Proc. SPIE 3738, 230-238 (1999).
  28. U. Schallenberg, U. Schulz, and N. Kaiser, 'Multicycle AR coatings: a theoretical approach,' in Advances in Optical Thin Films, C.Amra, N.Kaiser, and H.A.Macleod, eds., Proc. SPIE 5250, 357-366 (2004).
  29. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, 'Toward perfect antireflection coatings: numerical investigation,' Appl. Opt. 41, 3075-3083 (2002). [CrossRef] [PubMed]
  30. U. Schulz, U. B. Schallenberg, and N. Kaiser, 'Antireflection coating design for plastic optics,' Appl. Opt. 41, 3107-3110 (2002). [CrossRef] [PubMed]
  31. U. Schulz, U. B. Schallenberg, and N. Kaiser, 'Symmetrical periods in antireflective coatings for plastic optics,' Appl. Opt. 42, 1346-1351 (2003). [CrossRef] [PubMed]
  32. U. Schulz, N. Kaiser, and U. Schallenberg, 'Reflection reducing coating,' U.S. Patent 6,645,608 (11 November 2003).
  33. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001). [CrossRef]
  34. L. I. Epstein, 'Improvements in heat-reflecting filters,' J. Opt. Soc. Am. 45, 360-362 (1955). [CrossRef]
  35. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989).
  36. U. Schulz, N. Kaiser, and U. B. Schallenberg, 'AR-hard broadband antireflective coatings generated by a controlled needle-optimization technique,' in Optical Interference Coatings on CD-ROM (Optical Society of America, 2004), Paper TuB2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited