OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 7 — Mar. 1, 2006
  • pp: 1525–1529

Chirped-cavity dispersion-compensation filter design

Ya-Ping Li, Sheng-Hui Chen, and Cheng-Chung Lee  »View Author Affiliations

Applied Optics, Vol. 45, Issue 7, pp. 1525-1529 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (109 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new basic structure of a dispersive-compensation filter, called a chirped-cavity dispersion-compensator (CCDC) filter, was designed to offer the advantages of small ripples in both reflectance and group-delay dispersion (GDD). This filter provides a high dispersion compensation, like the Gires–Tournois interferometer (GTI) filter, and a wide working bandwidth, like the chirped mirror (CM). The structure of the CCDC is a cavity-type Fabry–Perot filter with a spacer layer ( 2 m H or 2 m L ) and a chirped high reflector. The CCDC filter can provide a negative GDD of - 50 fs 2 over a bandwidth of 56 THz with half the optical thickness of the CM or the GTI.

© 2006 Optical Society of America

OCIS Codes
(310.0310) Thin films : Thin films
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Design of Optical Coatings

Original Manuscript: March 1, 2005
Revised Manuscript: August 12, 2005
Manuscript Accepted: August 13, 2005

Ya-Ping Li, Sheng-Hui Chen, and Cheng-Chung Lee, "Chirped-cavity dispersion-compensation filter design," Appl. Opt. 45, 1525-1529 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Fibre-Optic Communication Systems (Wiley, 1997).
  2. I. A. Walmsley, L. Waxer, and C. Dorrer, 'The role of dispersion in optics,' Rev. Sci. Instrum. 72, 1-29 (2001). [CrossRef]
  3. G. Steinmeyer, 'A review of ultrafast optics and optoelectronics,' J. Opt. A 5, R1-R15 (2003). [CrossRef]
  4. R. L. Fork, O. E. Martinez, and J. P. Gordon, 'Negative dispersion using pairs of prisms,' Opt. Lett. 9, 150-152 (1984). [CrossRef] [PubMed]
  5. R. E. Sherriff, 'Analytic expressions for group-delay dispersion and cubic dispersion in arbitrary prism sequences,' J. Opt. Soc. Am. B 15, 1224-1230 (1998). [CrossRef]
  6. E. B. Treacy, 'Optical pulse compression with diffraction gratings,' IEEE J. Quantum Electron. 5, 454-458 (1969). [CrossRef]
  7. M. C. Parker and S. D. Walker, 'Multiple-order adaptive dispersion compensation using polynomially-chirped grating devices,' Appl. Phys. B 73, 635-645 (2001).
  8. F. Ouellette, 'Dispersion cancellation using linearly chirped Bragg grating filters in optical wave-guides,' Opt. Lett. 12, 847-849 (1987). [CrossRef] [PubMed]
  9. M. C. Farries, K. Sugden, D. C. J. Reid, I. Bennion, A. Molony, and M. J. Goodwin, 'Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass-filters produced by the use of an amplitude mask,' Electron. Lett. 30, 891-892 (1994). [CrossRef]
  10. L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J.-P. Meyn, 'Generation of sub-6 fs blue pulses by frequency doubling with quasi-phase-matching gratings,' Opt. Lett. 26, 614-616 (2001). [CrossRef]
  11. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, 'Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,' J. Opt. Soc. Am. B 17, 304-318 (2000). [CrossRef]
  12. M. K. Smit, 'New focusing and dispersive planar component based on optical phased array,' Electron. Lett. 24, 385-386 (1988). [CrossRef]
  13. C. Dragone, 'An N×N optical multiplexer using a planar arrangement of 2 star couplers,' IEEE Photon. Technol. Lett. 3, 812-815 (1991). [CrossRef]
  14. H. Takahashi, I. Nishi, and Y. Hibino, '10 GHz spacing optical frequency-division multiplexer based on arrayed waveguide grating,' Electron. Lett. 28, 380-382 (1992). [CrossRef]
  15. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, 'Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,' Opt. Lett. 19, 201-203 (1994). [CrossRef] [PubMed]
  16. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, 'Design and fabrication of double-chirped mirrors,' Opt. Lett. 22, 831-833 (1997). [CrossRef] [PubMed]
  17. N. Matuschek, F. X. Kärtner, and U. Keller, 'Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,' IEEE J. Quantum Electron. 35, 129-137 (1999). [CrossRef]
  18. F. Gires and P. Tournois, 'Interféromètre utilisable pour la compression d'impulsions lumineuses modules en frèquence,' C. R. Acad. Sci. 258, 6112-6115 (1964).
  19. J. Heppner and J. Kuhl, 'Intracavity chirp compensation in a colliding pulse mode-locked laser using thin-film interferometers,' Appl. Phys. Lett. 47, 453-455 (1985). [CrossRef]
  20. A. Stingl, C. Spielmann, and F. Krausz, 'Generation of 11 fs pulses from a Ti:sapphire laser without the use of prisms,' Opt. Lett. 19, 204-206 (1994). [CrossRef] [PubMed]
  21. B. Golubovic, R. R. Austin, M. K. Steiner-Shephard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. VanEngen, 'Double Gires-Tournois interferometer negative dispersion mirror for use in tunable mode-locked lasers,' Opt. Lett. 25, 275-277 (2000). [CrossRef]
  22. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, 'Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics,' Appl. Phys. B 71, 509-522 (2000). [CrossRef]
  23. G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, 'Tilted-front-interface chirped mirrors,' J. Opt. Soc. Am. B 18, 1747-1750 (2001). [CrossRef]
  24. U. Keller, 'New frontiers in ultrafast all-solid-state lasers,' Proceedings 2000 IEEE/LEOS Symposium Benelux Chapter (Institute of Electrical and Electronics Engineers, 2000), pp. 5-8.
  25. W. Dietel, E. Dbpel, K. Hehl, W. Rudolph, and E. Schmidt, 'Multilayer dielectric mirrors generated chirp in femtosecond dye-ring lasers,' Opt. Commun. 50, 179-182 (1984). [CrossRef]
  26. S. De Silvestri, P. Laporta, and O. Svelto, 'Analysis of quarter-wave dielectric-mirror dispersion in femtosecond dye-laser cavities,' Opt. Lett. 9, 335-337 (1984). [CrossRef] [PubMed]
  27. W. H. Knox, N. M. Pearson, K. D. Li, and Ch. A. Hirlimann, 'Interferometric measurements of femtosecond group delay in optical components,' Opt. Lett. 13, 574-576 (1988). [CrossRef] [PubMed]
  28. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 2001). [CrossRef]
  29. N. Matuschek, F. X. Kartner, D. H. Sutter, I. D. Jung, and U. Keller, 'Design of broadband double-chirped mirrors for the generation of sub-10 fs laser pulses,' in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 296-298.
  30. R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, 'Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,' Appl. Phys. B 70, S51-S57 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited