OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 7 — Mar. 1, 2006
  • pp: 1539–1543

Practical layer designs for polarizing beam-splitter cubes

Bernhard von Blanckenhagen  »View Author Affiliations

Applied Optics, Vol. 45, Issue 7, pp. 1539-1543 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (148 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Liquid-crystal-on-silicon- (LCoS-) based digital projection systems require high-performance polarizing beam splitters. The classical beam-splitter cube with an immersed interference coating can fulfill these requirements. Practical layer designs can be generated by computer optimization using the classic MacNeille polarizer layer design as the starting layer design. Multilayer structures with 100 nm bandwidth covering the blue, green, or red spectral region and one design covering the whole visible spectral region are designed. In a second step these designs are realized by using plasma-ion-assisted deposition. The performance of the practical beam-splitter cubes is compared with the theoretical performance of the layer designs.

© 2006 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(310.1620) Thin films : Interference coatings
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Design of Optical Coatings

Original Manuscript: March 1, 2005
Revised Manuscript: August 22, 2005
Manuscript Accepted: August 24, 2005

Bernhard von Blanckenhagen, "Practical layer designs for polarizing beam-splitter cubes," Appl. Opt. 45, 1539-1543 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Li and J. A. Dobrowolski, 'High performance thin-film polarizing beam splitter operating at angles greater than the critical angle,' Appl. Opt. 39, 2754-2771 (2000). [CrossRef]
  2. R. Perkins, D. Hansen, E. Gardner, J. Thorne, and A. Robbins, 'Broadband wire grid polarizer for the visible spectrum,' U.S. patent 6,122,103 (19 September 2000).
  3. T. Sergan, M. Lavrentovic, J. Kelly, E. Gardner, and D. Hansen, 'Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers,' J. Opt. Soc. Am. A 19, 1872-1885 (2002). [CrossRef]
  4. S. M. MacNeille, 'Beam splitter,' U.S. patent 2,403,731 (6 July 1946).
  5. See, e.g., A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989).
  6. L. Li and Z. Pang, 'Thin film polarizing device having metal-dielectric films,' U.S. patent 6,317,264 (13 November 2001).
  7. A. V. Tikhonravov, M. K. Trubetskov, and G. W. Bell, 'Application of the needle optimization technique to the design of optical coatings,' Appl. Opt. 35, 5493-5508 (1996). [CrossRef] [PubMed]
  8. A. Zöller, R. Götzelmann, H. Hagedorn, W. Klug, and K. Matl, 'Plasma ion assisted deposition: a powerful technology for the production of optical coatings,' Proc. SPIE 3133, 196-204 (1997). [CrossRef]
  9. L. Li and J. A. Dobrowolski, 'Visible broadband, wide-angle, thin-fim multilayer polarizing beam splitter,' Appl. Opt. 35, 2221-2225 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited