OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 7 — Mar. 1, 2006
  • pp: 1575–1582

Studies of polaritonic gaps in photonic crystals

Carl G. Ribbing, Herman Högström, and Andreas Rung  »View Author Affiliations

Applied Optics, Vol. 45, Issue 7, pp. 1575-1582 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1317 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In a photonic band structure two kinds of gaps with different origins can be observed. Photonic gaps are determined by the symmetry of the photonic crystal, the lattice constant, and the contrast of the dielectric functions for the two components. Polaritonic gaps originate from the bulk optical properties of one of the components. Excitation of ionic components in the lattice results in a photon energy interval in which the dielectric function is negative. Here we investigate the interaction between photonic gaps and polaritonic gaps in one-dimensional and two-dimensional photonic structures. In particular, we show that by such interactions the polaritonic gap can be made wider and stronger, be left unchanged, or be made to vanish.

© 2006 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(160.3220) Materials : Ionic crystals
(160.4670) Materials : Optical materials
(310.6860) Thin films : Thin films, optical properties
(350.2770) Other areas of optics : Gratings

ToC Category:

Original Manuscript: March 2, 2005
Revised Manuscript: August 16, 2005
Manuscript Accepted: August 24, 2005

Carl G. Ribbing, Herman Högström, and Andreas Rung, "Studies of polaritonic gaps in photonic crystals," Appl. Opt. 45, 1575-1582 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995), Chap. 2.
  2. E. G. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996), Chap. 2.
  3. E. Yablonovitch, 'Photonic crystals,' J. Mod. Opt. 41, 173-194 (1994). [CrossRef]
  4. C. G. Ribbing, 'Photonic structures as interference devices,' in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 35-58.
  5. C. F. Klingshirn, Semiconductor Optics (Springer-Verlag, 1997), Chap. 4.
  6. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, 'Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,' Phys. Rev. B 49, 11080-11087 (1994). [CrossRef]
  7. W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, 'Photonic band structures of a two-dimensional ionic dielectric medium,' Phys. Rev. B 54, 10280-10283 (1996). [CrossRef]
  8. W. Zhang, A. Hu, and N. Ming, 'The photonic band structure of the two-dimensional hexagonal lattice of ionic dielectric media,' J. Phys. Condens. Matter 9, 541-549 (1997). [CrossRef]
  9. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Field expulsion and reconfiguration in polaritonic photonic crystals,' Phys. Rev. Lett. 90, 196402 (2003). [CrossRef] [PubMed]
  10. K. C. Huang, P. Binstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, 'Phonon-polariton excitations in photonic crystals,' Phys. Rev. B 68, 075209 (2003). [CrossRef]
  11. R. Moussa, L. Salamon, F. de Fornel, J. P. Dufour, and H. Aourag, 'Photonic band gaps in highly ionic medium: CuCl, CuBr, Cul,' Infrared Phys. Technol. 44, 27-34 (2001). [CrossRef]
  12. O. Toader and S. John, 'Photonic band gap enhancement in frequency-dependent dielectrics,' Phys. Rev. E 70, 046605 (2004). [CrossRef]
  13. G. Gantzounis and N. Stefanou, 'Theoretical analysis of three-dimensional polaritonic photonic crystals,' Phys. Rev. B 72, 075107 (2005). [CrossRef]
  14. P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, 'A program for calculating photonic band structures and transmission coefficients of complex structures,' Comp. Phys. Commun. 85, 306-322 (1995). [CrossRef]
  15. C. K. Carniglia, 'Hot or hype? Reflections on the 'perfect mirror',' Photonics Spectra June 1999, 148-153.
  16. J. Dobrowolski, 'Reststrahlen filters,' in Handbook of Optics, W.Driscoll and S.Vaughan, eds. (McGraw-Hill, 1978), Chap. 8, Sec. 99.
  17. H. Högström and C. G. Ribbing, 'Polaritonic and photonic gaps in SiO2/Si and SiO2/air periodic structures,' Photonics Nanostruct. Fundam. Appl. 2, 23-32 (2004). [CrossRef]
  18. H. R. Philipp, 'Silicon dioxide,' in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1985) pp. 749-764.
  19. D. F. Edwards, 'Silicon,' in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1985), pp. 547-553.
  20. A. F. Turner, L. Chang, and T. P. Martin, 'Enhanced reflectance of Reststrahlen reflection filters,' Appl. Opt. 4, 927-933 (1965). [CrossRef]
  21. C. G. Ribbing, Ö. Staaf, and S. K. Andersson, 'Selective supression of thermal radiation from radomes and materials therefore,' Opt. Eng. 34, 3314-3322 (1995). [CrossRef]
  22. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, 'A three-dimensional photonic crystal operating at infrared wavelengths,' Nature 394, 251-253 (1998). [CrossRef]
  23. A. Rung, C. G. Ribbing, 'Calculated photonic structures for infrared emittance control,' Appl. Opt. 41, 3327-3331 (2002). [CrossRef] [PubMed]
  24. H. Högström, G. Forssell, and C. G. Ribbing, 'Realization of selective low emittance in both thermal atmospheric windows,' Opt. Eng. 44, 02600-1-7 (2005).
  25. E. Loh, 'Optical phonons in BeO crystals,' Phys. Rev. 166, 673-678 (1968). [CrossRef]
  26. C. G. Ribbing, 'Beryllium oxide: a frostpreventing insulator,' Opt. Lett. 15, 882-884 (1990).
  27. C. G. Ribbing and A. Rung, 'Sätt att skapa ett material med låg emittans i ett eller två bestämda våglängdsområden,' Swedish patent 0104195-3 (June 2003).
  28. A. Rung and C. G. Ribbing, 'Polaritonic and a photonic gap interaction in a 2D photonic crystal,' Phys. Rev. Lett. 92, 123901:1-3 (2004). [CrossRef]
  29. D. F. Edwards and R. H. White, 'Beryllium oxide' in Handbook of Optical Constants of Solids II, E.D.Palik, ed. (Academic, 1991), pp. 805-814.
  30. T. Chibuye, C. G. Ribbing, and E. Wäckelgård, 'Reststrahlen band studies of polycrystalline beryllium oxide,' Appl. Opt. 33, 5975-5981 (1994). [CrossRef] [PubMed]
  31. Ph. Mavropoulos, N. Papanikolaou, and P. H. Dederichs, 'Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions,' Phys. Rev. Lett. 85, 1088-1090 (2000). [CrossRef] [PubMed]
  32. A. Rung, 'Numerical studies of energy gaps in photonic crystals,' Ph.D. dissertation (Acta Universitatis Upsaliensis, Faculty of Science and Engineering no. 67, Uppsala, Sweden (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited