OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 7 — Mar. 1, 2006
  • pp: 1594–1601

Laser intensification by spherical inclusions embedded within multilayer coatings

Christopher J. Stolz, Michael D. Feit, and Thomas V. Pistor  »View Author Affiliations


Applied Optics, Vol. 45, Issue 7, pp. 1594-1601 (2006)
http://dx.doi.org/10.1364/AO.45.001594


View Full Text Article

Enhanced HTML    Acrobat PDF (3463 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The initiation of laser damage within optical coatings can be better understood by electric-field modeling of coating defects. The result of this modeling shows that light intensification as large as 24 × can occur owing to these coating defects. Light intensification tends to increase with inclusion diameter. Defects irradiated over a range of incident angles from 0 to 60 deg tend to have a higher light intensification at a 45 deg incidence. Irradiation wavelength has a significant effect on light intensification within the defect and the multilayer. Finally, shallow, or in the case of 45 deg irradiation, deeply embedded inclusions tend to have the highest light intensification.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3330) Lasers and laser optics : Laser damage
(240.0310) Optics at surfaces : Thin films
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles
(310.1620) Thin films : Interference coatings

ToC Category:
Stability of Coatings

History
Original Manuscript: March 1, 2005
Manuscript Accepted: July 20, 2005

Citation
Christopher J. Stolz, Michael D. Feit, and Thomas V. Pistor, "Laser intensification by spherical inclusions embedded within multilayer coatings," Appl. Opt. 45, 1594-1601 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-7-1594


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Baumeister, Optical Coating Technology (SPIE, 2004), Chaps. 5-51.
  2. M. R. Kozlowski, R. J. Tench, R. Chow, and L. Sheehan, 'Influence of defect shape on laser-induced damage in multiplayer coatings,' in Optical Interference Coatings, F. Abelès, ed., Proc. SPIE 2253, 743-750 (1994). [CrossRef]
  3. J. Dijon, G. Ravel, and B. André, 'Thermomechanical model of mirror laser damage at 1.06 µm. Part 2: Flat bottom pits formation,' in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 398-407 (1999). [CrossRef]
  4. F. Y. Génin and C. J. Stolz, 'Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,' in Third International Workshop on Laser Beam and Optics Characterization, M. Morin and A. Giesen, eds., Proc. SPIE 2870, 439-448 (1996).
  5. T. Spalvins and W. A. Brainard, 'Nodular growth in thick-sputtered metallic coatings,' J. Vac. Sci. Technol. 11, 1186-1192 (1974). [CrossRef]
  6. J. F. DeFord and M. R. Kozlowski, 'Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings,' in Laser-Induced Damage in Optical Materials: 1992, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 1848, 455-470 (1993). [CrossRef]
  7. R. H. Sawicki, C. C. Shang, and T. L. Swatloski, 'Failure characterization of nodular defects in multi-layer dielectric coatings,' in Laser-Induced Damage in Optical Materials: 1994, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2428, 333-342 (1995). [CrossRef]
  8. C. C. Walton, F. Y. Génin, M. R. Kozlowski, G. E. Loomis, and E. Pierce, 'Effect of silica overlayers on laser damage of HfO2-SiO2 56° incidence high reflectors,' in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2714, 550-558 (1996). [CrossRef]
  9. C. J. Stolz, F. Y. Génin, T. A. Reitter, N. Molau, R. P. Bevis, M. K. Von Gunten, D. J. Smith, and J. F. Anzellotti, 'Effects of SiO2 overcoat thickness on laser damage morphology of HfO2/SiO2 Brewster's angle polarizers at 1064 nm,' in Laser-Induced Damage in Optical Materials: 1996, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2966, 265-272 (1996). [CrossRef]
  10. A. Wong, 'Rigorous three-dimensional time-domain finite-difference electromagnetic simulation,' Ph.D. dissertation (University of California at Berkeley, Berkeley, California, 1994).
  11. T. Pistor, 'Electromagnetic simulation and modeling with applications in lithography,' Ph.D. dissertation (University of California at Berkeley, Berkeley, California, 2001).
  12. K. S. Yee, 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  13. J. Berenger, 'A perfectly matched layer for the absorption of electromagnetic waves,' J. Comp. Phys. 114, 185-200 (1994). [CrossRef]
  14. G. Mie, 'Beitraege zur Optik Trueber Medien, Speziell-Kolloidaler Metalosungen,' Ann. Physik 25, 377-445 (1908).
  15. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941), Sect. 9.25.
  16. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), Sect. 9.2.
  17. J. Dijon, M. Poulingue, and J. Hue, 'Thermomechanical model of mirror laser damage at 1.06 mm. Part 1: Nodule ejection,' in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 387-396 (1999). [CrossRef]
  18. R. J. Tench, R. Chow, and M. R. Kozlowski, 'Characterization of defect geometries in multilayer optical coatings,' J. Vac. Sci. Technol. A 12, 2808-2813 (1994). [CrossRef]
  19. M. Poulingue, M. Ignat, and J. Dijon, 'The effects of particle pollution on the mechanical behaviour of multilayer systems,' Thin Solid Films 348, 215-221 (1999). [CrossRef]
  20. A. B. Papendrew, C. J. Stolz, Z. L. Wu, G. E. Loomis, and S. Falabella, 'Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,' in Laser-Induced Damage in Optical Materials: 2000, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 4377, 53-61 (2001). [CrossRef]
  21. C. J. Stolz, F. Y. Génin, and T. V. Pistor, 'Electric-field enhancement by nodular defects in multilayer coatings irradiated at normal and 45° incidence,' in Laser-Induced Damage in Optical Materials: 2003, Proc. SPIE 5273, 41-49 (2004). [CrossRef]
  22. C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, 'A comparison of nodular defect seed geometries from different deposition techniques,' in Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2714, 374-382 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited