OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 8 — Mar. 10, 2006
  • pp: 1777–1784

Form-birefringent space-variant inhomogeneous medium element for shaping point-spread functions

Chia-Ho Tsai, Uriel Levy, Lin Pang, and Yeshaiahu Fainman  »View Author Affiliations

Applied Optics, Vol. 45, Issue 8, pp. 1777-1784 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally characterize the properties of an element that generates a doughnutlike point-spread function by converting the linearly polarized incident field to radially or azimuthally polarized light utilizing space-variant inhomogeneous medium (SVIM) form-birefringent subwavelength structures. To fabricate the high-aspect-ratio SVIM structures, we developed a chemically assisted ion-beam-etching process that permits control of the fabricated form-birefringent structure profile to optimize the effect of birefringence and the impedance mismatch on the substrate–air interface. Fabricated elements perform efficient polarization conversion for incident angles as large as 30°, where the extinction ratio is found to be better than 4.5 . The intensity distribution in the far field shows that our SVIM device generates a doughnut point-spread function that may prove useful for various applications.

© 2006 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization

ToC Category:
Optical Design and Fabrication

Original Manuscript: March 1, 2005
Revised Manuscript: August 8, 2005
Manuscript Accepted: August 30, 2005

Chia-Ho Tsai, Uriel Levy, Lin Pang, and Yeshaiahu Fainman, "Form-birefringent space-variant inhomogeneous medium element for shaping point-spread functions," Appl. Opt. 45, 1777-1784 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Niziev and V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999). [CrossRef]
  2. S. Quabis, R. Dron, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  3. S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Appl. Opt. 29, 2234-2239 (1990).
  4. M. Stalder and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt. Lett. 21, 1948-1950 (1996).
  5. I. Richter, P. C. Sun, F. Xu, and Y. Fainman, "Design considerations of form birefringent microstructures," Appl. Opt. 34, 2421-2429 (1995).
  6. F. Xu, R. Tyan, P. C. Sun, C. Cheng, A. Scherer, and Y. Fainman, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett. 20, 2457-2459 (1995).
  7. W. Nakagawa, R. Tyan, P. C. Sun, and Y. Fainman, "Ultrashort pulse propagation in near-field periodic diffractive structures by use of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 18, 1072-1081 (2001).
  8. C. Gu and P. Yeh, "Form birefringence dispersion in periodic layered media," Opt. Lett. 21, 504-506 (1996).
  9. S. Y. Chou and W. Deng, "Subwavelength amorphous silicon transmission gratings and applications in polarizers and wave plates," Appl. Phys. Lett. 67, 742-744 (1995). [CrossRef]
  10. G. P. Nordin and P. C. Deguzman, "Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region," Opt. Express 5, 163-168 (1999).
  11. F. Xu, J. Ford, and Y. Fainman, "Single-substrate birefringent computer-generated holograms," Opt. Lett. 21, 516-518 (1996).
  12. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings," Opt. Lett. 27, 285-287 (2002).
  13. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, "Engineering space-variant inhomogeneous media for polarization control," Opt. Lett. 29, 1718-1720 (2004). [CrossRef]
  14. J. D. Chinn, I. Adesida, and E. D. Wolf, "Profile formation in CAIBE," Solid State Technol. 27, 123-129 (1984).
  15. K. R. Milkove, J. A. Coffin, and C. Dziobkowski, "Effects of argon addition to a platinum dry etch process," J. Vac. Sci. Technol. A 16, 1483-1488 (1998). [CrossRef]
  16. W. J. Zubrzycki, G. A. Vawter, and J. R. Wendt, "High-aspect-ratio nanophotonic components fabricated by Cl2 reactive ion beam etching," J. Vac. Sci. Technol. B 17, 2740-2744 (1999). [CrossRef]
  17. D. H. Raguin and G. M. Morris, "Antireflection structured surfaces for the infrared spectral region," Appl. Opt. 32, 1154-1167 (1993).
  18. U. Levy and Y Fainman, "Dispersion properties of inhomogeneous nanostructures," J. Opt. Soc. Am. 21, 881-889 (2004). [CrossRef]
  19. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
  20. I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, "Characteristics of chemically assisted ion beam etching," Appl. Phys. Lett. 65, 889-891 (1994). [CrossRef]
  21. A. Scherer, J. L. Jewell, Y. H. Lee, J. P. Harbison, and L. T. Florez, "Fabrication of microlasers and microresonator optical switches," Appl. Phys. Lett. 55, 2724-2726 (1989). [CrossRef]
  22. M. Chabloz, Y. Sakai, T. Matsuura, and K. Tsutsumi, "Improvement of sidewall roughness in deep silicon etching," Microsyst. Technol. 6, 86-89 (2000). [CrossRef]
  23. C. C. Cheng and A. Scherer, "Fabrication of photonic band-gap crystals," J. Vac. Sci. Technol. B 13, 2696-2700 (1995). [CrossRef]
  24. G. A. Lincoln, M. W. Geis, S. Pang, and N. N. Efremow, "Large area ion-beam-assisted etching of GaAs with high etch rates and controlled anisotropy," J. Vac. Sci. Technol. B 1, 1043-1046 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited