OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 8 — Mar. 10, 2006
  • pp: 1785–1793

Focusing characteristics of a planar solid-immersion mirror

Chubing Peng, Christophe Mihalcea, Kalman Pelhos, and William A. Challener  »View Author Affiliations

Applied Optics, Vol. 45, Issue 8, pp. 1785-1793 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The focusing characteristics of a planar waveguide solid-immersion mirror with parabolic design have been investigated. The solid-immersion mirror is integrated into an optical waveguide, and light focusing is achieved with a parabolic mirror parallel to the waveguide plane and waveguide mode confinement normal to the waveguide plane. Optical-quality tantala silica planar waveguides can be obtained by evaporation. The parabolic sidewall reflects over 50 % of the incident waveguide mode and generates a diffraction-limited focus. The measured spot size for the solid-immersion mirror described here is less than one third of the wavelength. Polarization analysis shows that the electric field near the focal region has components parallel and normal to the polarization state of the incident beam. The planar solid-immersion mirror is essentially free of chromatic aberration, and the alignment of the illumination beam is within a fraction of degrees.

© 2006 Optical Society of America

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Optical Devices

Original Manuscript: August 5, 2005
Manuscript Accepted: September 27, 2005

Chubing Peng, Christophe Mihalcea, Kalman Pelhos, and William A. Challener, "Focusing characteristics of a planar solid-immersion mirror," Appl. Opt. 45, 1785-1793 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994). [CrossRef]
  2. L. P. Ghislain and V. B. Elings, "Near-field scanning solid immersion microscope," Appl. Phys. Lett. 72, 2779-2781 (1998). [CrossRef]
  3. T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002). [CrossRef]
  4. K. Ueyanagi and T. Tomono, "Proposal of a near-field optical head using a new solid immersion mirror," Jpn. J. Appl. Phys. 39, 888-891 (2000). [CrossRef]
  5. K. Ueyanagi, Y. Uehara, Y. Adachi, T. Suzuki, S. Moriyasu, T. Suzuki, K. Wakabayashi, Y. Yamagata, and H. Ohmor, "Fabrication of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror," Jpn. J. Appl. Phys. 42, 898-903 (2003). [CrossRef]
  6. Y. S. Kim, S. J. Lee, Y. J. Kim, N. C. Park, and Y. P. Park, "Design of a super-paraboloidal solid immersion mirror for near-field recording," Jpn. J. Appl. Phys. 43, 5756-5760 (2004). [CrossRef]
  7. K. Konno, M. Okitsu, K. Ogura, and H. Hatano, "Design and evaluation of a solid immersion mirror using a dielectric layer stack for near-field optical recording," Jpn. J. Appl. Phys. 43, 2530-2535 (2004). [CrossRef]
  8. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992). [CrossRef]
  9. F. Issiki, K. Ito, K. Etoh, and S. Hosaka, "1.5-Mbit/s direct readout of line-and-space patterns using a scanning near-field optical microscopy probe slide with air-bearing control," Appl. Phys. Lett. 76, 804-806 (2000). [CrossRef]
  10. H. Yoshikawa, Y. Andoh, and M. Yamamoto, "7.5-MHz data-transfer rate with a planar aperture mounted upon a near-field optical slider," Opt. Lett. 25, 67-69 (2000).
  11. K. Sendur, C. Peng, and W. Challener, "Near-field radiation for a ridge waveguide transducer in the vicinity of a solid immersion lens," Phys. Rev. Lett. 94, 043901 (2005). [CrossRef]
  12. M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, and A. Nakaoki, "High-density near-field readout over 50 GB capacity using solid immersion lens," Jpn. J. Appl. Phys. 42, 1101-1104 (2003). [CrossRef]
  13. T. Mizuno, T. Yamada, H. Sakakibara, S. Kawakita, H. Ueda, and K. Watanabe, "Fabrication of a solid immersion mirror and its optical evaluation," Jpn. J. Appl. Phys. 41, 617-623 (2002). [CrossRef]
  14. T. Mizuno, N. Kojima, T. Hitosugi, K. Sako, and K. Watanabe, "An optical configuration based on flying head structure for near-field recording," Jpn. J. Appl. Phys. 43, 1403-1409 (2004). [CrossRef]
  15. S. Ura, T. Suhara, H. Nishihara, and J. Koyama, "An integrated optic disk pickup device," J. Lightwave Technol. LT-4, 913-918 (1986).
  16. T. Shiono and H. Ogawa, "Planar-optic-disk pickup with diffractive micro-optics," Appl. Opt. 33, 7350-7355 (1994).
  17. J. Brazas, G. Kohnke, and J. McMullen, "Mode-index waveguide lens with novel gradient boundaries developed for application to optical recording," Appl. Opt. 31, 3420-3428 (1992).
  18. Y. Sohn, Y. Park, D. Suh, H. Ryu, and M. C. Paek, "Focusing grating coupler for blue laser light," IEEE Photon. Technol. Lett. 16, 162-164 (2004). [CrossRef]
  19. W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, "Miniature planar solid immersion mirror with focused spot less than a quarter of a wavelength," Opt. Express 13, 7189-7197 (2005). [CrossRef]
  20. P. K. Ien and R. Ulrich, "Theory of prism coupler and thin-film light guides," J. Opt. Soc. Am. 60, 1325-1337 (1970).
  21. S. Monneret, P. Huguet-Chantome, and F. Flory, "M-lines techniques: prism coupling measurement and discussion of accuracy for homogeneous waveguides," J. Opt. A 2, 188-195 (2000).
  22. M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, "Grating coupler for excitation of optical guided waves in thin films," Appl. Phys. Lett. 16, 523-525 (1970). [CrossRef]
  23. C. Peng and W. A. Challener, "Input-grating couplers for narrow Gaussian beam: influence of groove depth," Opt. Express 2, 6481-6490 (2004).
  24. C. Mihalcea, A. W. Scholz, S. Werner, S. Munster, E. Oesterschulze, and R. Kassing, "Multipurpose sensor tips for scanning near-field microscopy," Appl. Phys. Lett. 68, 3531-3533 (1996). [CrossRef]
  25. A. V. Itagi, T. E. Schlesinger, and D. D. Stancil, "Refraction theory for planar waveguides, modeling of a mode index integrated solid immersion lens," Jpn. J. Appl. Phys. 42, 740-749 (2003). [CrossRef]
  26. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1985).
  27. P. K. Wei, R. Chang, J. H. Hsu, S. H. Lin, and W. S. Fann, "Two-dimensional near-field intensity distribution of tapered fiber probes," Opt. Lett. 21, 1876-1878 (1996).
  28. M. A. Lieb and A. J. Meixner, "A high numerical aperture parabolic mirror as imaging device for confocal microscopy," Opt. Express 8, 458-474 (2001).
  29. C. Peng, C. Mihalcea, D. Buchel, W. A. Challener, and E. C. Gage, "Near-field recording using a planar solid immersion mirror," Appl. Phys. Lett. 87, 151105 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited