OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 8 — Mar. 10, 2006
  • pp: 1812–1819

Optical trap stiffness in the presence and absence of spherical aberrations

Karen C. Vermeulen, Gijs J. L. Wuite, Ger J. M. Stienen, and Christoph F. Schmidt  »View Author Affiliations


Applied Optics, Vol. 45, Issue 8, pp. 1812-1819 (2006)
http://dx.doi.org/10.1364/AO.45.001812


View Full Text Article

Enhanced HTML    Acrobat PDF (749 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical traps are commonly constructed with high-numerical-aperture objectives. Oil- immersion objectives suffer from spherical aberrations when used for imaging in aqueous solutions. The effect of spherical aberrations on trapping strength has been modeled by approximation, and only a few experimental results are available in the case of micrometer-sized particles. We present an experimental study of the dependence of lateral and axial optical-trap stiffness on focusing depth for polystyrene and silica beads of 2 μm diameter by using oil- and water-immersion objectives. We demonstrate a strong depth dependence of trap stiffness with the oil-immersion objective, whereas no depth dependence was observed with the water-immersion objective.

© 2006 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.7010) Lasers and laser optics : Laser trapping
(180.0180) Microscopy : Microscopy

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 11, 2005
Revised Manuscript: August 31, 2005
Manuscript Accepted: September 16, 2005

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Karen C. Vermeulen, Gijs J. L. Wuite, Ger J. M. Stienen, and Christoph F. Schmidt, "Optical trap stiffness in the presence and absence of spherical aberrations," Appl. Opt. 45, 1812-1819 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-8-1812


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. G. J. L. Wuite, S. B. Smith, M. Young, D. Keller, and C. Bustamante, "Single-molecule studies of the effect of template tension on T7 DNA polymerase activity," Nature (London) 404, 103-106 (2000). [CrossRef] [PubMed]
  3. M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Force and velocity measured for single molecules of RNA polymerase," Science 282, 902-907 (1998). [CrossRef] [PubMed]
  4. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct observation of kinesin stepping by optical trapping interferometry," Nature (London) 365, 721-727 (1993). [CrossRef] [PubMed]
  5. J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single myosin molecule mechanics—piconewton forces and nanometer steps," Nature (London) 368, 113-119 (1994). [CrossRef] [PubMed]
  6. J. E. Molloy, J. E. Burns, J. Kendrickjones, R. T. Tregear, and D. C. S. White, "Movement and force produced by a single myosin head," Nature (London) 378, 209-212 (1995). [CrossRef] [PubMed]
  7. M. J. deCastro, R. M. Fondecave, L. A. Clarke, C. F. Schmidt, and R. J. Stewart, "Working strokes by single molecules of the kinesin-related microtubule motor ncd," Nat. Cell Biol. 2, 724-729 (2000). [CrossRef] [PubMed]
  8. A. D. Mehta, R. S. Rock, M. Rief, J. A. Spudich, M. S. Mooseker, and R. E. Cheney, "Myosin-V is a processive actin-based motor," Nature (London) 400, 590-593 (1999). [CrossRef] [PubMed]
  9. R. S. Rock, S. E. Rice, A. L. Wells, T. J. Purcell, J. A. Spudich, and H. L. Sweeney, "Myosin VI is a processive motor with a large step size," Proc. Natl. Acad. Sci. USA 98, 13655-13659 (2001). [CrossRef] [PubMed]
  10. D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, "The bacteriophage phi 29 portal motor can package DNA against a large internal force," Nature (London) 413, 748-752 (2001). [CrossRef] [PubMed]
  11. R. J. Davenport, G. J. L. Wuite, R. Landick, and C. Bustamante, "Single-molecule study of transcriptional pausing and arrest by E-coli RNA polymerase," Science 287, 2497-2500 (2000). [CrossRef] [PubMed]
  12. C. Veigel, M. L. Bartoo, D. C. S. White, J. C. Sparrow, and J. E. Molloy, "The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer," Biophys. J. 75, 1424-1438 (1998). [CrossRef] [PubMed]
  13. M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, "Calibration of optical tweezers with differential interference contrast signals," Rev. Sci. Instrum. 73, 1687-1696 (2002). [CrossRef]
  14. A. Rohrbach and E. H. K. Stelzer, "Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations," Appl. Opt. 41, 2494-2507 (2002). [CrossRef] [PubMed]
  15. E. Fällman and O. Axner, "Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers," Appl. Opt. 42, 3915-3926 (2003). [CrossRef] [PubMed]
  16. E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Horber, "Photonic force microscope calibration by thermal noise analysis," Appl. Phys. A 66, S75-S78 (1998). [CrossRef]
  17. L. P. Ghislain, N. A. Switz, and W. W. Webb, "Measurement of small forces using an optical trap," Rev. Sci. Instrum. 65, 2762-2768 (1994). [CrossRef]
  18. W. H. Wright, G. J. Sonek, and M. W. Berns, "Parametric study of the forces on microspheres held by optical tweezers," Appl. Opt. 33, 1735-1748 (1994). [CrossRef] [PubMed]
  19. A. Buosciolo, G. Pesce, and A. Sasso, "New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers," Opt. Commun. 230, 357-368 (2004). [CrossRef]
  20. H. Felgner, O. Müller, and M. Schliwa, "Calibration of light forces in optical tweezers," Appl. Opt. 34, 977-982 (1995). [CrossRef] [PubMed]
  21. G. J. L. Wuite, R. J. Davenport, A. Rappaport, and C. Bustamante, "An integrated laser trap/flow control video microscope for the study of single biomolecules," Biophys. J. 79, 1155-1167 (2000). [CrossRef] [PubMed]
  22. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003). [CrossRef] [PubMed]
  23. M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, "Two-dimensional tracking of ncd motility by back focal plane interferometry," Biophys. J. 74, 1074-1085 (1998). [CrossRef] [PubMed]
  24. F. Gittes and C. F. Schmidt, "Interference model for back-focal-plane displacement detection in optical tweezers," Opt. Lett. 23, 7-9 (1998). [CrossRef]
  25. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Horber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44, 378-386 (1999). [CrossRef] [PubMed]
  26. M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, "An automated two-dimensional optical force clamp for single molecule studies," Biophys. J. 83, 491-501 (2002). [CrossRef] [PubMed]
  27. K. C. Neuman, E. A. Abbondanzieri, and S. M. Block, "Measurement of the effective focal shift in an optical trap," Opt. Lett. 30, 1318-1320 (2005). [CrossRef] [PubMed]
  28. S. H. Wiersma, P. Torok, T. D. Visser, and P. Varga, "Comparison of different theories for focusing through a plane interface," J. Opt. Soc. Am. A 14, 1482-1490 (1997). [CrossRef]
  29. K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994). [CrossRef] [PubMed]
  30. F. Gittes and C. F. Schmidt, "Signals and noise in micromechanical measurements," in Methods in Cell Biology, M.Sheetz, ed. (Academic, 1998), Vol. 55, pp. 129-156. [PubMed]
  31. H. Faxen, "Die bewegung einer Starren Kugel längs der Achse eines mit zäher Flüssigkeit gefüllten Rohres," Ark. Mat. Astron. Fys. 17, 1-28 (1923).
  32. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Noordhoff, 1973).
  33. S. H. Wiersma, T. D. Visser, and P. Torok, "Annular focusing through a dielectric interface: scanning and confining the intensity," Pure Appl. Opt. 7, 1237-1248 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited