Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical trap stiffness in the presence and absence of spherical aberrations

Not Accessible

Your library or personal account may give you access

Abstract

Optical traps are commonly constructed with high-numerical-aperture objectives. Oil- immersion objectives suffer from spherical aberrations when used for imaging in aqueous solutions. The effect of spherical aberrations on trapping strength has been modeled by approximation, and only a few experimental results are available in the case of micrometer-sized particles. We present an experimental study of the dependence of lateral and axial optical-trap stiffness on focusing depth for polystyrene and silica beads of 2 μm diameter by using oil- and water-immersion objectives. We demonstrate a strong depth dependence of trap stiffness with the oil-immersion objective, whereas no depth dependence was observed with the water-immersion objective.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations

Alexander Rohrbach and Ernst H. K. Stelzer
Appl. Opt. 41(13) 2494-2507 (2002)

Holographic aberration correction: optimising the stiffness of an optical trap deep in the sample

Maria Dienerowitz, Graham Gibson, Richard Bowman, and Miles Padgett
Opt. Express 19(24) 24589-24595 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved