OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 8 — Mar. 10, 2006
  • pp: 1820–1824

Current-dependent spectral blueshift in a three-dimensional photonic-quantum-ring laser

Sung-Jae An, Joongwoo Bae, Vladimir G. Minogin, and O'Dae Kwon  »View Author Affiliations


Applied Optics, Vol. 45, Issue 8, pp. 1820-1824 (2006)
http://dx.doi.org/10.1364/AO.45.001820


View Full Text Article

Enhanced HTML    Acrobat PDF (581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The emission spectra of photonic-quantum-ring lasers can be explained by a three-dimensional Rayleigh–Fabry–Perot cavity resonance model. The proposed model for the emission spectral peaks fits well with the observed blueshift of the emission spectrum envelope as a function of the view angle. Furthermore, we observe that the emission spectra with the high-order mode index showed blueshift behaviors as functions of the injection current, whereas those with the low-order mode index showed redshift behaviors. These phenomena might result in lowering the effective refractive index by the carrier inhomogeneity in the active disk.

© 2006 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(300.6260) Spectroscopy : Spectroscopy, diode lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 1, 2005
Manuscript Accepted: August 8, 2005

Citation
Sung-Jae An, Joongwoo Bae, Vladimir G. Minogin, and O'Dae Kwon, "Current-dependent spectral blueshift in a three-dimensional photonic-quantum-ring laser," Appl. Opt. 45, 1820-1824 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-8-1820


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Yamamoto and R. E. Slusher, "Optical processes in microcavities," Phys. Today 46(6), 66-73 (1993). [CrossRef]
  2. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992). [CrossRef]
  3. A. F. J. Levi, R. E. Slusher, S. L. McCall, T. S. J. Pearton, and W. S. Hobson, "Room-temperature lasing action in In0.51Ga0.49P/In0.2Ga0.8As microcylinder laser diodes," Appl. Phys. Lett. 62, 2021-2023 (1993). [CrossRef]
  4. N. C. Frateschi and A. F. J. Levi, "Resonant modes and laser spectrum of microdisk lasers," Appl. Phys. Lett. 66, 2932-2934 (1995). [CrossRef]
  5. N. C. Frateschi and A. F. J. Levi, "The spectrum of microdisk lasers," J. Appl. Phys. 80, 644-653 (1996). [CrossRef]
  6. A. W. Poon, F. Courvoisier, and R. K. Chang, "Multimode resonances in square-shaped optical microcavities," Opt. Lett. 26, 632-634 (2001). [CrossRef]
  7. A. Yariv, "Scaling laws and minimum threshold currents for quantum-confined semiconductor lasers," Appl. Phys. Lett. 53, 1033-1035 (1988). [CrossRef]
  8. J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim, and O. Kwon, "Photonic quantum ring," Phys. Rev. Lett. 82, 536-539 (1999). [CrossRef]
  9. B. H. Park, S. D. Baek, J. Y. Kim, J. Bae, H. Han, and O. Kwon, "Optical sensing by using photonic quantum ring lasers and resonance enhanced photodetectors," Opt. Eng. 41, 1339-1345 (2002). [CrossRef]
  10. B. H. Park, J. Bae, M. J. Kim, and O. Kwon, "Chiral wave propagation manifold of the photonic quantum ring laser," Appl. Phys. Lett. 81, 580-582 (2002). [CrossRef]
  11. J. Bae, J. Lee, O. Kwon, and V. G. Minogin, "Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison between theory and experiment," Opt. Lett. 26, 632-635 (2001).
  12. M. K. Chin, D. Y. Chu, and S. T. Ho, "Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes," J. Appl. Phys. 75, 3302-3307 (1994). [CrossRef]
  13. R. P. Wang and M. M. Dumitrescu, "Theory of optical modes in semiconductor microdisk lasers," J. Appl. Phys. 81, 3391-3397 (1997). [CrossRef]
  14. J.-Y. Kim, K. S. Kwak, J. S. Kim, B. Kang, and O. Kwon, "Fabrication of photonic quantum ring laser using chemically assisted ion beam etching," J. Vac. Sci. Technol. B 19, 1334-1338 (2001). [CrossRef]
  15. J.-Y. Kim, J. Lee, J. Kim, B. K. Kang, and O. Kwon, "Effect of surface treatment on leakage current of GaAs/AlGaAs laser microcavities," Appl. Phys. Lett. 82, 4504-4506 (2003). [CrossRef]
  16. C. Wilmsen, H. Temkin, and L. Coldren, "Fabrication and performance of vertical-cavity surface-emitting lasers," in Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, K.D.Choquette and K.M.Geib, eds. (Cambridge U. Press, 1999), pp. 193-232.
  17. G. R. Hadley, "Effective index model for vertical-cavity surface-emitting lasers," Opt. Lett. 20, 1483-1485 (1995). [CrossRef] [PubMed]
  18. G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. W. Corzine, "Comprehensive numerical modeling of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 32, 607-616 (1996). [CrossRef]
  19. U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, "Semiconductor microlaser linewidths," Phys. Rev. Lett. 73, 1785-1788 (1994). [CrossRef] [PubMed]
  20. S. M. K. Thiyagarajan and A. F. J. Levi, "Dynamic behavior of scaled microdisk lasers," Solid-State Electron. 45, 1821-1826 (2001). [CrossRef]
  21. B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O. Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser," Appl. Phys. Lett. 79, 1593-1595 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited