OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 8 — Mar. 10, 2006
  • pp: 1831–1838

Micro-optically assisted high-index waveguide coupling

Dirk Michaelis, Christoph Wächter, Sven Burger, Lin Zschiedrich, and Andreas Bräuer  »View Author Affiliations


Applied Optics, Vol. 45, Issue 8, pp. 1831-1838 (2006)
http://dx.doi.org/10.1364/AO.45.001831


View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Adapting the concept of solid immersion lenses, we numerically study a micro-optical scheme for conventional high-index and photonic-crystal waveguide coupling by using a combination of different numerical methods such as ray tracing, angular-spectrum propagation, finite-difference time-domain simulations, and finite-element-method simulations. The numerical findings are discussed by means of impedance, group- or energy-velocity, spot-size, and phase-matching criteria. When fabrication constraints for high-index immersion lenses made of silicon are taken into account, a coupling efficiency of 80 % can be reached for monomode silicon-on-insulator waveguides with a quadratic cross section of the core and rectangular cross sections of moderate aspect ratio. Similar coupling efficiencies of 80 % can be obtained for silicon-on-insulator photonic-crystal waveguides. Tolerances that are due to misalignments and variations of the substrate thickness of the silicon lens are discussed.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(220.3620) Optical design and fabrication : Lens system design
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Other Areas of Optics

History
Original Manuscript: January 31, 2005
Revised Manuscript: September 5, 2005
Manuscript Accepted: September 26, 2005

Citation
Dirk Michaelis, Christoph Wächter, Sven Burger, Lin Zschiedrich, and Andreas Bräuer, "Micro-optically assisted high-index waveguide coupling," Appl. Opt. 45, 1831-1838 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-8-1831


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. März, Integrated Optics: Design and Modeling (Artech House, 1994).
  2. H. Wu and F. S. Barnes, Microlenses—Coupling Light to Optical Fibers (IEEE, 1991).
  3. I. Moerman, P. Van Daele, and P. Demeester, "A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices," IEEE J. Sel. Top. Quantum Electron 3, 1308-1320 (1997). [CrossRef]
  4. R. Kaiser and H. Heidrich, "Optoelectronic/photonic integrated circuits on InP between technological feasibility and commercial success," IEICE Trans. Electron. 4, 970-981 (2002).
  5. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003).
  6. C. Wei, J. Haes, G. Dobbelaere, P. Demeester, R. Baets, X. Leijtens, A. H. De-Vreede, M. Smith, and E. Metaal, "Elliptic beam converters on InP: design and experiment," in Proceedings of the European Conference on Integrated Optics (Delft U. Press, 1995), pp. 193-196.
  7. F. Dorgeuille, B. Mersali, S. Francois, G. Herve-Gruyer, and M. Filoche, "Spot size transformer with a periodically segmented waveguide based on InP," Opt. Lett. 20, 581-583 (1995).
  8. M. Galarza, K. De-Mesel, S. Verstuyft, C. Aramburu, M. Lopez-Amo, I. Moerman, P. Van-Daele, and R. Baets, "A new spot-size converter concept using fiber-matched antiresonant reflecting optical waveguides," J. Lightwave Technol. 21, 269-274 (2003). [CrossRef]
  9. G. T. Reed, G. Z. Masanovic, W. R. Headley, P. Ching-Eng, S. P. Chan, S. T. Lim, V. M. Passaro, D. Hak, O. Cohen, and M. Paniccia, "Small devices in SOI: fabrication and design issues," Proc. SPIE 5357, 75-86 (2004). [CrossRef]
  10. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002). [CrossRef]
  11. K. Hosomi and T. Katsuyama, "A dispersion compensator using coupled defects in a photonic crystal," IEEE J. Quantum. Electron. 38, 825-829 (2002). [CrossRef]
  12. T. Karle, Y. J. Chai, C. N. Margan, I. H. White, and T. F. Krauss, "Observation of pulse compression in photonic crystal coupled cavity waveguide," IEEE J. Lightwave Technol. 22, 514-519 (2004). [CrossRef]
  13. R. März, S. Burger, S. Golka, A. Forchel, C. Herrmann, C. Jamois, D. Michaelis, and K. Wandel, "Planar high-index-contrast photonic crystals for telecom applications," in Photonic Crystals: Advances in Design, Fabrication and Characterization, K.Busch, S.Lölkes, R.B.Wehrspohn, and H.Föll, eds. (Wiley-VCH, 2004), pp. 308-328.
  14. M. Palamaru and Ph. Lalanne, "Photonic crystal waveguides—Out of plane losses and adiabadic modal conversion," Appl. Phys. Lett. 78, 1466-1468 (2001). [CrossRef]
  15. T.-D. Happ, M. Kamp, and A. Forchel, "Photonic crystal tapers for ultra-compact mode conversion," Opt. Lett. 26, 1102-1104 (2001).
  16. A. Talneau, Ph. Lalanne, M. Agio, and C. M. Soukoulis, "Low reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Opt. Lett. 27, 1522-1524 (2002).
  17. P. Bienstman, S. Assefa, S. G. Johnson, J. D. Joannopoulos, G. S. Petrich, and L. A. Kolodziejski, "Taper structures for coupling into photonic crystal slab waveguides," J. Opt. Soc. Am. B 20, 1817-1821 (2003).
  18. Y. Xu, R. K. Lee, and A. Yariv, "Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry," Opt. Lett. 25, 755-757 (2000).
  19. A. Mekis and J. D. Joannopoulos, "Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides," J. Lightwave Technol. 19, 861-865 (2001). [CrossRef]
  20. N. Moll and G.-L. Bona, "Comparison of three-dimensional photonic crystal slab waveguides with two-dimensional photonic crystal waveguides: efficient butt coupling into these photonic crystal waveguides," J. Appl. Phys. 93, 4986-4991 (2003). [CrossRef]
  21. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguide," Opt. Express 11, 2927-2939 (2003).
  22. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van-Daele, I. Moerman, S. Verstuyft, K. De-Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002). [CrossRef]
  23. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, "Experimental demonstration of evanescent coupling from optical fiber tapers to photonic crystal waveguides," Electron. Lett. 39, 842-844 (2003). [CrossRef]
  24. P. E. Barclay, K. Srinivasan, and O. Painter, "Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities," J. Opt. Soc. Am. B 20, 2274-2284 (2003).
  25. M. A. Lieberman, Principles of Plasma Discharges and Materials Processing (Wiley, 1994).
  26. I. Ichimura, S. Hayashi, and G. S. Kinso, "High-density optical recording using a solid immersion lens," Appl. Opt. 36, 4339-4348 (1997).
  27. Z. D. Popovic, R. A. Spargue, and G. A. N. Connell, "Technique for monolithic fabrication of microlens arrays," Appl. Opt. 27, 1281-1284 (1988).
  28. J. J. Fijol, E. E. Fike, P. B. Keating, D. Gilbody, J. J. LeBlanc, S. A. Jacobson, W. J. Kessler, and M. B. Frish, "Fabrication of silicon-on-insulator adiabatic tapers for low loss optical interconnection of photonic devices," Proc. SPIE 4997, 157-170 (2003). [CrossRef]
  29. V. S. Ignatowsky, "Diffraction by a lens of arbitrary aperture," Trans. Opt. Inst. Petrograd 1(4), 1-36 (1919).
  30. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959).
  31. D. G. Flagello, T. Milster, and A. E. Rosenbluth, "Theory of high-NA imaging in homogeneous thin films," J. Opt. Soc. Am. A 13, 53-64 (1996).
  32. P. Török and P. Varga, "Electromagnetic diffraction of light focused through a stratified medium," Appl. Opt. 36, 2305-2312 (1997).
  33. A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, "Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system," Opt. Express 12, 1281-1293 (2004). [CrossRef]
  34. A. Taflove, Computational Electrodynamics—The Finite-Difference Time-Domain Method (Artech House, 1998).
  35. S. Burger, R. Klose, A. Schädle, and L. Zschiedrich, "HelmPole—A finite element solver for scattering problems on unbounded domains: implementation based on PML," Tech. Rep. 03-38 (Zuse Institute, 2003).
  36. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  37. D. Michaelis, U. Peschel, C. Wächter, and A. Bräuer, "Coupling coefficients of photonic crystal waveguides," Proc. SPIE 4987, 114-125 (2003). [CrossRef]
  38. S. Burger, R. Klose, A. Schädle, F. Schmidt, L. Zschiedrich, "Adaptive FEM solver for the computation of electromagnetic eigenmodes in 3D photonic crystal structures," Proceedings SCEE04—Scientific Computing in Electrical Engineering (Springer-Verlag, submitted for publication).
  39. M. Hoffmann, P. Kopka, and E. Voges "Low-loss fiber-matched low-temperature PECVD waveguides with small core dimensions for optical communication systems," IEEE Photon. Technol. Lett. 9, 1238-1240 (1997). [CrossRef]
  40. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited