OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 9 — Mar. 20, 2006
  • pp: 1898–1908

Spatial–spectral modulating snapshot hyperspectral imager

William R. Johnson, Daniel W. Wilson, and Greg Bearman  »View Author Affiliations

Applied Optics, Vol. 45, Issue 9, pp. 1898-1908 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (961 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Experimental results are presented for a computed tomography imaging spectrometer (CTIS) with imposed spatial–spectral modulation on the image scene. This modulation structure on the CTIS tomographic dispersion created substantial gains in spectral reconstruction resolution after standard iterative, nonlinear, inversion techniques were used. Modulation limits system ambiguities, so high-frequency spectral and low-frequency spatial scene data could be recovered. The results demonstrate how spatial modulation acts as a high-frequency spectral deconvolver for the snapshot hyperspectral imager technology.

© 2006 Optical Society of America

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(110.0110) Imaging systems : Imaging systems
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Imaging Systems

Original Manuscript: March 24, 2005
Revised Manuscript: August 16, 2005
Manuscript Accepted: August 25, 2005

William R. Johnson, Daniel W. Wilson, and Greg Bearman, "Spatial-spectral modulating snapshot hyperspectral imager," Appl. Opt. 45, 1898-1908 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Wolfe, Introduction to Imaging Spectrometers (SPIE Optical Engineering Press, 1997). [CrossRef]
  2. R. Riesenberg and U. Dillner, "Hadamard imaging spectrometer with micro slit matrix," in Imaging Spectrometry V, M.R.Descour and S.S.Shen, eds., Proc. SPIE 3753, 203-213 (1999).
  3. H. R. Morris, C. C. Hoyt, and P. J. Treado, "Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid-crystal-tunable filters," Appl. Spectrosc. 48, 857-866 (1994). [CrossRef]
  4. T. H. Chao, H. Zhou, X. Xia, and S. Serati, "Hyperspectral imaging using electro-optic Fourier transform spectrometer," in Optical Pattern Recognition XV, D.P.Casasent and T.-H.Chao, eds., Proc. SPIE 5437, 163-170 (2004).
  5. J. E. Murguia, T. D. Reeves, J. M. Mooney, W. S. Ewing, and F. D. Shepherd, "A compact visible/near infrared hyperspectral imager," in Infrared Detectors and Focal Plane Arrays VI, E.L.Dereniak and R.E.Sampson, eds., Proc. SPIE 4028, 457-468 (2000).
  6. W. Liu, G. Barbastathis, and D. Psaltis, "Volume holographic hyperspectral imaging," Appl. Opt. 43, 3581-3599 (2004). [CrossRef] [PubMed]
  7. T. Okamoto and I. Yamaguchi, "Simultaneous acquisition of spectral image information," Opt. Lett. 16, 1277-1279 (1991). [CrossRef] [PubMed]
  8. F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, and D. V. Karpukhin, "Spectrotomography--a new method of obtaining spectrograms of 2-D objects," Opt. Spectrosc. (USSR) 71, 561-563 (1991).
  9. T. Okamoto, A. Takahashi, and I. Yamaguchi, "Simultaneous acquisition of spectral and spatial intensity distribution," Appl. Spectrosc. 47, 1198-1202 (1993). [CrossRef]
  10. M. R. Descour and E. L. Dereniak, "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results," Appl. Opt. 34, 4817-4826 (1995). [CrossRef] [PubMed]
  11. A. R. Harvey and D. W. Fletcher-Holmes, "Multispectral imaging in a snapshot," in Spectral Imaging: Instrumentation, Applications, and Analysis, G.H.Bearman, A.Mahadevan-Jansen, and R.M.Levenson, eds., Proc. SPIE 5694, 110-119 (2004).
  12. F. Natterer, The Mathematics of Computerized Tomography (Wiley, 1986).
  13. M. R. Descour, E. L. Dereniak, and A. C. Dubey, "Mine detection using instantaneous spectral imaging ," in Detection Technologies for Mines and Minelike Targets, A. C. Dubey, I. Cindrich, J. Ralston, and K. Rigano, eds., Proc. SPIE 2496, 286-304 (1995).
  14. K. Hege, D. O'Connell, W. Johnson, S. Basty, and E. L. Dereniak, "Hyperspectral imaging for astronomy and space surveillance," in Imaging Spectrometry IX, S.S.Chen and P.E.Lewis, eds., Proc. SPIE 5159, 380-391 (2003).
  15. J. Xie, G. Bearman, D. Wilson, B. Johnson, A. Walsh, S. Sadda, P. Updike, M Javaheri, and M. Humayun, "Snap-shot retinal imaging spectroscopy," in Anatomy & Pathology/Visual Psychophysics/Physiological Optics, Publ. 4283/B651 (Association for Research in vision and Ophthalmology, 2005).
  16. M. R. Descour, C. E. Volin, E. L. Dereniak, T. M. Gleeson, M. F. Hopkins, D. W. Wilson, and P. D. Maker, "Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser," Appl. Opt. 36, 3694-3698 (1997). [CrossRef] [PubMed]
  17. J. Hsieh, Computed Tomography, Principles, Design, Artifacts and Recent Advances (SPIE Optical Engineering Press, 2003).
  18. J. Gaskill, Linear Systems, Fourier transforms, and Optics (Wiley, 1978).
  19. C. Volin, "MWIR Spectrometer Operating Theory," Ph.D. dissertation (University of Arizona Press, 2000).
  20. C. Volin and E. Dereniak, "Signal to noise analysis of the Computed Tomography Imaging Spectrometer," in Imaging Spectrometry IV, M.R.Descour and S.S.Shen, eds., Proc. SPIE 3438, 107-113 (1998).
  21. J. Georges, Designing a Non-scanning Snapshot Hyperspectral Imager (University of Arizona Press, 2001).
  22. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).
  23. C. E. Shannon, "Communication in the presence of noise," Proc. IEEE 37, 10-21 (1949).
  24. D. Malacara, Optical Shop Testing (Wiley, 2001).
  25. H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers, "Objective assessment of image quality. Fisher information, Fourier cross talk, and figures of merit for task performance," J. Opt. Soc. Am. A 12, 834-852 (1995). [CrossRef]
  26. H. H. Barrett and H. Gifford, "Cone-beam tomography with discrete data sets," Phys. Med. Biol. 39, 451-476 (1994). [CrossRef] [PubMed]
  27. R. Z. Stodilka, E. J. Soares, and S. J. Glick, "Characterization of tomographic sampling in hybrid PET using the Fourier cross-talk matrix," IEEE Trans. Med. Imaging 21, 1468-1478 (2002). [CrossRef]
  28. The Mathworks, V. 6.3 (http://www.mathworks.com/), September 2004.
  29. K. J. Kearney and Z. Ninkov, "Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy," in Spatial Light Modulators, R.L.Sutherland, ed., Proc. SPIE 3292, 81-92 (1998).
  30. W. R. Johnson, D. W. Wilson, G. H. Bearman, and J. Backlund, "An all-reflective computed tomography imaging spectrometer," in Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, C.A.Nardell, P.G.Lucey, J.-H.Yee, and J.B.Garvin, eds., Proc. SPIE 5660, 88-97 (2004).
  31. L. A. Sheep and Y. Vardi "Maximum likelihood reconstruction for emission tomography," IEEE Trans. Med. Imaging MI-1, 113-122 (1982). [CrossRef]
  32. J. Garcia and E. Dereniak, "Mixed expectation reconstruction technique," Appl. Opt. 38, 3745-3748 (1999). [CrossRef]
  33. H. H. Barrett, "Noise properties of the EM algorithm. I. Theory," Phys. Med. Biol. 39, 833-846 (1994). [CrossRef] [PubMed]
  34. Ocean Optics, Inc., HgAr calibration source (http://www.oceanoptics.com/products/hg1.asp), January 2005.
  35. "All-reflective snapshot hyperspectral imager for UV and IR applications," Opt. Lett. 30, 1464-1466 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited