OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 45, Iss. 9 — Mar. 20, 2006
  • pp: 1917–1930

Axially resolved complete Mueller matrix confocal microscopy

David Lara and Chris Dainty  »View Author Affiliations

Applied Optics, Vol. 45, Issue 9, pp. 1917-1930 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2852 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a technique that is capable of obtaining complete polarization-sensitive three-dimensional images that could reveal unknown anatomical conditions of living tissue that possess polarization- dependent signatures. Previously, the 16 Mueller coefficients were measured independently only by use of two-dimensional imaging techniques. We also present the experimental combination of a depth-resolved confocal imaging system with a complete Mueller matrix polarimeter. To calibrate the system, a double-pass method had to be implemented. We also indicate, experimentally, that the confocal sectioning of the system has a degrading effect on axially resolved Mueller matrix measurements.

© 2006 Optical Society of America

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(180.1790) Microscopy : Confocal microscopy

ToC Category:
Ellipsometry and Polarimetry

Original Manuscript: April 21, 2005
Revised Manuscript: October 10, 2005
Manuscript Accepted: October 14, 2005

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

David Lara and Chris Dainty, "Axially resolved complete Mueller matrix confocal microscopy," Appl. Opt. 45, 1917-1930 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997). [CrossRef] [PubMed]
  2. K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. D. Silva, and M. J. Everett, "Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography," Appl. Opt. 37, 6026-6036 (1998). [CrossRef]
  3. G. Yao and L. V. Wang, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999). [CrossRef]
  4. M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, "Polarization sensitive optical coherence tomography of the rabbit eye," IEEE J. Sel. Top. Quantum Electron. 5, 1159-1167 (1999). [CrossRef]
  5. S. Jiao, G. Yao, and L. V. Wang, "Depth-resolved two-dimensional Stokes vector of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography," Appl. Opt. 39, 6318-6324 (2000). [CrossRef]
  6. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002). [CrossRef]
  7. J. F. de Boer and T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," J. Biomed. Opt. 7, 359-371 (2002). [CrossRef] [PubMed]
  8. M. Pircher, E. Goetzinger, R. Leitgeb, and C. K. Hitzenberger, "Transversal phase resolved polarization sensitive optical coherence tomography," Phys. Med. Biol. 49, 1257-1263 (2004). [CrossRef] [PubMed]
  9. R. A. Chipman, "Polarimetry," in Handbook of Optics, M.Bass, ed., (McGraw-Hill, 1995), Vol. 2, Chap. 22, pp. 22.1-22.37.
  10. E. Compain, S. Poirier, and B. Drevillon, "General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers," Appl. Opt. 38, 3490-3502 (1999). [CrossRef]
  11. F. Delplancke, "Automated high-speed Mueller matrix scatterometer," Appl. Opt. 36, 5388-5395 (1997). [CrossRef] [PubMed]
  12. R. M. A. Azzam, "Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all Stokes parameters of light," Opt. Acta 29, 685-689 (1982). [CrossRef]
  13. S. Krishnan, "Calibration, properties, and applications of the division-of-amplitude photopolarimeter at 632.8 and 1523 nm," J. Opt. Soc. Am. A 9, 1615-1622 (1992). [CrossRef]
  14. E. Compain and B. Drevillon, "High-frequency modulation of the four states of polarization of light with a single phase modulator," R. Sci. Instrum. 69, 1574-1580 (1998). [CrossRef]
  15. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).
  16. R. M. A. Azzam, "Beam-splitters for the division-of-amplitude photopolarimeter," Opt. Acta 32, 1404-1412 (1985). [CrossRef]
  17. A. M. El-Saba, R. M. A. Azzam, and M. A. G. Abushagur, "Parallel-slab division-of-amplitude photopolarimeter," Opt. Lett. 21, 1709-1711 (1996). [CrossRef] [PubMed]
  18. Y. Cui and R. M. A. Azzam, "Sixteen-beam grating-based division-of-amplitude photopolarimeter," Opt. Lett. 21, 89-91 (1996). [CrossRef] [PubMed]
  19. E. Compain and B. Drevillon, "Broadband division-of-amplitude polarimeter based on uncoated prisms," Appl. Opt. 37, 5938-5944 (1998). [CrossRef]
  20. A. El-Saba, R. M. A. Azzam, and M. A. G. Abushagur, "Performance optimization and light beam deviation analysis of the parallel-slab division-of-amplitude photopolarimeter," Appl. Opt. 38, 2829-2836 (1999). [CrossRef]
  21. R. M. A. Azzam and A. De, "Optimal beam splitters for the division-of-amplitude photopolarimeter," J. Opt. Soc. Am. A 20, 955-958 (2003). [CrossRef]
  22. The condition number that we use is the one that corresponds to the mathematical definition of the condition number in the l2 form: the ratio of the largest to the smallest singular value in the singular-value decomposition of a matrix.
  23. J. S. Tyo, "Considerations in polarimeter design," in Polarization Analysis, Measurement, and Remote Sensing III, D.B.Chenault, M.J.Duggin, W.G.Egan, and D.H.Goldstein, eds., Proc. SPIE 4133, 65-74 (2000).
  24. M. H. Smith, "Optimization of dual-rotating-retarder Mueller matrix polarimeter," Appl. Opt. 41, 2488-2493 (2002). [CrossRef] [PubMed]
  25. J. S. Tyo, "Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error," Appl. Opt. 41, 619-630 (2002). [CrossRef] [PubMed]
  26. A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drevillon, "General methods for optimized design and calibration of Mueller polarimeters," Thin Solid Films 455-456, 112-119 (2004). [CrossRef]
  27. A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drevillon, "Optimized Mueller polarimeter with liquid crystals," Opt. Lett. 28, 616-618 (2003). [CrossRef] [PubMed]
  28. S.-Y. Lu and R. A. Chipman, "Interpretation of Mueller matrices based on polar decomposition," J. Opt. Soc. Am. A 13, 1106-1113 (1996). [CrossRef]
  29. J. M. Bueno, "Polarimetry using liquid-crystal variable retarders: theory and calibration," J. Optics A Pure Appl. Opt. 2, 216-222 (2000). [CrossRef]
  30. E. Compain and B. Drevillon, "Complete high-frequency measurement of Mueller matrices based on a new coupled-phase modulator," Rev. Sci. Instrum. 68, 2671-2680 (1997). [CrossRef]
  31. S. Inoué, "Foundations of confocal scanned imaging in light microscopy," in Handbook of Biological Confocal Microscopy 2nd ed., J.B.Pawley, ed. (Plenum, 1995), Chap. 1, pp. 1-17.
  32. G. Smith and D. A. Atchinson, The Eye and Visual Optical Instruments (Cambridge U. Press, 1997). [CrossRef]
  33. P. Török and T. Wilson, "Rigorous theory for axial resolution in confocal microscopes," Opt. Commun. 137, 127-135 (1997). [CrossRef]
  34. P. Török, P. Higdon, and T. Wilson, "On the general properties of polarised light conventional and confocal microscopes," Opt. Commun. 148, 300-315 (1998). [CrossRef]
  35. P. Török, "Imaging of small birefringent objects by polarised light conventional and confocal microscopes," Opt. Commun. 181, 7-18 (2000). [CrossRef]
  36. P. M. F. Nielsen, F. N. Reinholz, and P. G. Charette, "Polarization-sensitive scanned fiber confocal microscope," Opt. Eng. 35, 3084-3091 (1996). [CrossRef]
  37. Y. A. Andrienko, M. S. Dubovikov, and A. D. Gladun, "Optical tomography of a birefringent medium," J. Opt. Soc. Am. A 9, 1761-1764 (1992). [CrossRef]
  38. X. Wand and L. V. Wang, "Propagation of polarized light in birefringent turbid media: a Monte Carlo study," J. Biomed. Opt. 7, 279-290 (2002). [CrossRef]
  39. R. C. Jones, "A new calculus for the treatment of optical systems. VII. Properties of the N-matrices," J. Opt. Soc. Am. 38, 671-685 (1948). [CrossRef]
  40. R. M. A. Azzam, "Propagation of partially polarized light through anisotropic media with or without depolarization: a differential 4 × 4 matrix calculus," J. Opt. Soc. Am. A 68, 1756-1767 (1978). [CrossRef]
  41. J. W. Hovenier and C. V. M. van der Mee, "Testing scattering matrices: a compendium of recipes," J. Quant. Spectrosc. Radiat. Transfer 55, 649-661 (1996). [CrossRef]
  42. J. J. Gil and E. Bernabeu, "A depolarization criterion in Mueller matrices," Opt. Acta 32, 259-261 (1985). [CrossRef]
  43. J. J. Gil and E. Bernabeu, "Depolarization and polarization indices of an optical system," Opt. Acta 33, 185-189 (1986). [CrossRef]
  44. C. V. M. van der Mee, "An eigenvalue criterion for matrices transforming Stokes parameters," J. Math. Phys. 34, 5072-5088 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited