OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 9 — Mar. 20, 2006
  • pp: 2014–2027

Simulations of the accuracy in retrieving stratospheric aerosol effective radius, composition, and loading from infrared spectral transmission measurements

Helen M. Steele, Annmarie Eldering, and Jerry D. Lumpe  »View Author Affiliations


Applied Optics, Vol. 45, Issue 9, pp. 2014-2027 (2006)
http://dx.doi.org/10.1364/AO.45.002014


View Full Text Article

Enhanced HTML    Acrobat PDF (1803 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine the extent to which three physical aerosol parameters—effective radius, composition (sulfate weight percent), and total volume—can be determined from infrared transmission spectra. Using simulated transmission data over the range 800 4750 cm 1 ( 12.5 2 . 1 μ m ) and errors taken from the infrared spectral measurements of the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument, we use optimal estimation to recover these aerosol parameters. Uncertainties in these are examined as a function of the size, composition, and loading of stratospheric aerosols and of the spectral range employed. Using the entire spectral range above, we retrieve all three parameters with a precision to within 3 % if the size distribution form is known. Additional errors result, however, from an uncertainty in the size distribution width. These are small (only a few percent) for composition and total volume but are substantial (as much as 50 % ) for effective radius. Errors also increase substantially when the spectral range is reduced. The retrieved effective radius can have an error of 100 % or greater for typical stratospheric aerosol sizes when the spectral range is restricted to the lower wavenumber part of the range. For good accuracy in effective radius, the spectral range must extend beyond 3000 cm 1 . Composition and total volume are less sensitive to the spectral range than effective radius. These simulations were carried out with modeled data to test the potential accuracy of stratospheric sulfate aerosol retrievals from the Atmospheric Chemistry Experiment (ACE). Because of the limitations that result from the use of simulated data, we have tested our retrieval algorithm using ATMOS spectra in different filter regions and present here the aerosol parameters obtained.

© 2006 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.2200) Scattering : Extinction

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 20, 2004
Revised Manuscript: January 24, 2005
Manuscript Accepted: January 26, 2005

Citation
Helen M. Steele, Annmarie Eldering, and Jerry D. Lumpe, "Simulations of the accuracy in retrieving stratospheric aerosol effective radius, composition, and loading from infrared spectral transmission measurements," Appl. Opt. 45, 2014-2027 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-9-2014


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. P. Chu and M. P. McCormick, "Inversion of stratospheric aerosol and gaseous constituents from spacecraft solar extinction data in the 0.38-1.0 μm wavelength region," Appl. Opt. 18, 1404-1413 (1979). [CrossRef] [PubMed]
  2. W. P. Chu, M. P. McCormick, J. Lenoble, C. Brogniez, and P. Pruvost, "SAGE II inversion algorithm," J. Geophys. Res. 94, 8339-8351 (1989). [CrossRef]
  3. J. D. Lumpe, R. M. Bevilacqua, K. W. Hoppel, S. S. Krigman, D. L. Kriebel, D. J. Debrestian, C. E. Randall, D. W. Rusch, C. Brogniez, R. Ramananahérisoa, E. P. Shettle, J. J. Olivera, J. Lenoble, and P. Pruvost, "POAM II retrieval algorithm and error analysis," J. Geophys. Res. 102, 23,593-23,614 (1997). [CrossRef]
  4. J. D. Lumpe, R. M. Bevilacqua, K. W. Hoppel, and C. E. Randall, "POAM III retrieval algorithm and error analysis," J. Geophys. Res. 107(D21), 4575, doi:10.1029/2002JD002137 (2002). [CrossRef]
  5. G. K. Yue and A. Deepak, "Retrieval of stratospheric aerosol size distribution from atmospheric extinction of solar radiation at two wavelengths," Appl. Opt. 22, 1639-1645 (1983). [CrossRef] [PubMed]
  6. G. K. Yue, M. P. McCormick, and W. P. Chu, "Retrieval of composition and size distribution of stratospheric aerosols with the SAGE II satellite experiment," J. Atmos. Ocean. Technol. 3, 371-380 (1986). [CrossRef]
  7. G. K. Yue, "A new approach to retrieval of aerosol size distributions and integral properties from SAGE II aerosol extinction spectra," J. Geophys. Res. 104, 27,491-27,506 (1999). [CrossRef]
  8. G. K. Yue, "Retrieval of aerosol size distributions and integral properties from simulated extinction measurements at SAGE III wavelengths by the linear minimizing error method," J. Geophys. Res. 105, 14,719-14,736 (2000). [CrossRef]
  9. J. J. Bauman, P. B. Russell, M. A. Geller, and P. Hamill, "A stratospheric climatology from SAGE II and CLAES measurements. 1. Methodology," J. Geophys. Res. 108, 4382, doi:10.1029/2002JD002992 (2003).
  10. C. Bingen, D. Fussen, and F. Vanhellemont, "A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984-2000. 1. Methodology and climatological observations," J. Geophys. Res. 109, D06201, doi:10.1029/2003JD003518 (2004).
  11. C. Bingen, D. Fussen, and F. Vanhellemont, "A global climatology of stratospheric aerosol size distribution parameters derived from SAGE II data over the period 1984-2000. 2. Reference data," J. Geophys. Res. 109, D06202, doi:10.1029/2003JD003511 (2004).
  12. H. M. Steele, J. D. Lumpe, R. P. Turco, R. M. Bevilacqua, and S. T. Massie, "Retrieval of aerosol surface area and volume densities from extinction measurements: application to POAM II and SAGE II," J. Geophys. Res. 104, 9325-9336 (1999). [CrossRef]
  13. P.-H. Wang, G. S. Kent, M. P. McCormick, L. W. Thomason, and G. K. Yue, "Retrieval analysis of aerosol-size distribution with simulated extinction measurements at SAGE III wavelengths," Appl. Opt. 35, 433-440 (1996). [CrossRef] [PubMed]
  14. M. E. Hervig, J. M. Russell III, L. L. Gordley, J. Daniels, S. R. Drayson, and J. H. Park, "Aerosol effects and corrections in the Halogen Occultation Experiment," J. Geophys. Res. 100, 1067-1079 (1995). [CrossRef]
  15. M. C. Abrams, M. R. Gunson, A. Y. Chang, C. P. Rinsland, and R. Zander, "Remote sensing of the Earth's atmosphere from space with high-resolution Fourier-transform spectroscopy: development and methodology of data processing for the Atmospheric Trace Molecule Spectroscopy experiment," Appl. Opt. 35, 2774-2786 (1996). [CrossRef] [PubMed]
  16. M. R. Gunson, M. M. Abbas, M. C. Abrams, M. Allen, L. R. Brown, T. L. Brown, A. Y. Chang, A. Goldman, F. W. Irion, L. L. Lowes, E. Mahieu, G. L. Manney, H. A. Michelsen, M. J. Newchurch, C. P. Rinsland, R. J. Salawich, G. P. Stiller, G. C. Toon, Y. L. Yung, and R. Zander, "The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment: deployment on the ATLAS Space Shuttle missions," Geophys. Res. Lett. 23, 2333-2339 (1996). [CrossRef]
  17. G. C. Toon, "The MkIV interferometer," Opt. Photon. News 2(x), 19-21 (1991). [CrossRef]
  18. G. C. Toon, J.-F. Blavier, J. N. Solario, and J. T. Szeto, "Airborne observations of the 1992 Arctic winter stratosphere by FTIR solar absorption spectroscopy," in Proceedings from Optical Methods in Atmospheric Chemistry, H. I. Schiff and U. Platt, eds., Proc. SPIE 1715, 457-467 (1992). [CrossRef]
  19. C. P. Rinsland, G. K. Yue, M. R. Gunson, R. Zander, and M. C. Abrams, "Mid-infrared extinction by sulfate aerosols from the Mt. Pinatubo eruption," J. Quant. Spectrosc. Radiat. Transfer 52, 241-252 (1994). [CrossRef]
  20. A. Eldering, F. W. Irion, A. Y. Chang, M. R. Gunson, F. P. Mills, and H. M. Steele, "Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology," Appl. Opt. 40, 3082-3091 (2001). [CrossRef]
  21. H. M. Steele, A. Eldering, B. Sen, G. C. Toon, F. P. Mills, and B. H. Kahn, "Retrieval of stratospheric aerosol size and composition information from solar infrared transmission spectra," Appl. Opt. 42, 2140-2154 (2003). [CrossRef] [PubMed]
  22. B. H. Kahn, A. Eldering, F. W. Irion, F. P. Mills, B. Sen, and M. R. Gunson, "Cloud identification in Atmospheric Trace Molecule Spectroscopy infrared occultation measurements," Appl. Opt. 41, 2768-2780 (2002). [CrossRef] [PubMed]
  23. A. Y. Zasetsky, J. J. Sloan, R. Escribano, and D. Fernandez, "A new method for the quantitative identification of the composition, size and density of stratospheric aerosols from high resolution IR satellite measurements," Geophys. Res. Lett. 29, 2071 (2002). [CrossRef]
  24. M.-A. Soucy, F. Chateauneuf, C. Deutsch, and N. Etienne, "ACE-FTS instrument detailed design," in Earth Observing Systems VII, W. L. Barnes, ed., Proc. SPIE 4814, 70-81 (2002). [CrossRef]
  25. F. Chateauneuf, M.-A. A. Soucy, C. Deutsch, N. Blanchard, and J. G. Giroux, "Recent developments on the ACE-FTS instrument," in Infrared Spaceborne Remote Sensing IX, M. Strojnik and B. F. Andresen, eds., Proc. SPIE 4486, 393-402 (2002). [CrossRef]
  26. C. D. Boone and P. F. Bernath, "SciSat-1 mission overview and status," in Earth Observing Systems VIII, W. L. Barnes, ed., Proc. SPIE 5151, 133-142 (2003). [CrossRef]
  27. J. Hansen and L. Travis, "Light scattering in planetary atmospheres," Space Sci. Rev. 16, 527-610 (1974). [CrossRef]
  28. P. B. Russell, J. M. Livingston, R. F. Pueschel, J. J. Hughes, J. B. Pollack, S. L. Brooks, P. Hamill, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, and R. W. Bergstrom, "Global to microscale evolution of the Pinatubo volcanic aerosol, derived from diverse measurements and analyses," J. Geophys. Res. 101, 18,745-18,764 (1996). [CrossRef]
  29. U. M. Biermann, B. P. Luo, and T. Peter, "Absorption spectra and optical constants of binary and ternary solutions of H2SO4, HNO3, and H2O in the mid infrared at atmospheric temperatures," J. Phys. Chem. A 10, 783-793 (2000). [CrossRef]
  30. U. K. Krieger, J. C. Mossinger, B. Luo, U. Weers, and T. Peter, "Measurement of the refractive indices of H2SO4-HNO3-H2O solutions to stratospheric temperatures," Appl. Opt. 39, 3691-3703 (2000). [CrossRef]
  31. C. D. Rodgers, "Characterization and error analysis of profiles retrieved from remote sounding measurements," J. Geophys. Res. 95, 5587-5595 (1990). [CrossRef]
  32. C. D. Rodgers, Inverse Methods for Atmospheric Sounding. Theory and Practice, Vol. 2 of Series on Atmospheric, Oceanic and Planetery Physics (World Scientific, 2000). [CrossRef]
  33. H. M. Steele and R. P. Turco, "Retrieval of aerosol size distributions from satellite extinction spectra using constrained linear inversion," J. Geophys. Res. 102, 16,737-16,748 (1997). [CrossRef]
  34. P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, and T. J. Pepin, "Satellite and correlative measurements of the stratospheric aerosol. I. An optical model for data conversions," J. Atmos. Sci. 38, 1279-1294 (1981). [CrossRef]
  35. J. L. Gras and J. E. Laby, "Southern hemisphere stratospheric aerosol measurements. 2. Time variations and the 1974-1975 aerosol events," J. Geophys. Res. 84, 303-307 (1979). [CrossRef]
  36. R. G. Pinnick, J. M. Rosen, and D. J. Hofmann, "Stratospheric aerosol measurements. III. Optical model calculations," J. Atmos. Sci. 33, 304-314 (1976). [CrossRef]
  37. O. B. Toon and J. Pollack, "A global average model of atmospheric aerosols for radiative transfer calculations," J. Appl. Meteorol. 15, 225-243 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited