OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 45, Iss. 9 — Mar. 20, 2006
  • pp: 2077–2088

Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements

Christoph Kern, Sebastian Trick, Bernhard Rippel, and Ulrich Platt  »View Author Affiliations


Applied Optics, Vol. 45, Issue 9, pp. 2077-2088 (2006)
http://dx.doi.org/10.1364/AO.45.002077


View Full Text Article

Enhanced HTML    Acrobat PDF (799 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present what is to our knowledge the first use of light-emitting diodes (LEDs) as light sources for long-path differential optical absorption spectroscopy (LP-DOAS) measurements of trace gases in the open atmosphere. Modern LEDs represent a potentially advantageous alternative to thermal light sources, in particular to xenon arc lamps, which are the most common active DOAS light sources. The radiative properties of a variety of LEDs were characterized, and parameters such as spectral shape, spectral range, spectral stability, and ways in which they can be influenced by environmental factors were analyzed. The spectra of several LEDs were found to contain Fabry–Perot etalon-induced spectral structures that interfered with the DOAS evaluation, in particular when a constant temperature was not maintained. It was shown that LEDs can be used successfully as light sources in active DOAS experiments that measure NO 2 and NO 3 near 450 and 630   nm , respectively. Average detection limits of 0 .3   parts in 109 and 16 parts in 1012 respectively, were obtained by use of a 6 km light path in the open atmosphere.

© 2006 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(230.3670) Optical devices : Light-emitting diodes
(280.1120) Remote sensing and sensors : Air pollution monitoring

ToC Category:
Optical Devices

History
Original Manuscript: May 27, 2005
Manuscript Accepted: September 16, 2006

Citation
Christoph Kern, Sebastian Trick, Bernhard Rippel, and Ulrich Platt, "Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements," Appl. Opt. 45, 2077-2088 (2006)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-9-2077


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Perner, D. H. Ehhalt, H. W. Pätz, U. Platt, E. P. Röth, and A. Volz, "OH-radicals in the lower troposphere," Geophys. Res. Lett. 3, 466-468 (1976). [CrossRef]
  2. D. Perner and U. Platt, "Detection of nitrous acid by differential optical absorption," Geophys. Res. Lett. 6, 917-920 (1979). [CrossRef]
  3. U. Platt, D. Perner, and H. W. Pätz, "Simultaneous measurements of atmospheric CH2O, O3, and NO2 by differential optical absorption," J. Geosphys. Res. 84, 6329-6335 (1979). [CrossRef]
  4. U. Platt, "Differential optical absorption spectroscopy (DOAS)," in Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27-84.
  5. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy--Principles and Applications (Springer-Verlag, 2005).
  6. J. Stutz and U. Platt, "Numerical analysis and error estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods," Appl. Opt. 35, 6041-6053 (1996). [CrossRef] [PubMed]
  7. Technical Information XBO 450 W/2 OFR, No. FO 4962, Edition 07/00 (Osram, 2000).
  8. Technical Information XBO 50 W/XE, No. FO 4732, Edition 02/02 (Osram, 2002).
  9. U. Platt, D. Perner, J. Schröder, C. Kessler, and A. Toennissen, "The diurnal variation of NO3," J. Geosphys. Res. 86doi: 10.1029(1981).
  10. S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorptions spectroscopy using light-emitting diodes," Chem. Phys. Lett. 398, 68-74 (2004). [CrossRef]
  11. E. F. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2003).
  12. T. Hermes, "Light sources and optics for differential optical absorption spectroscopy," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 1999).
  13. J. Stutz, "Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller-Optischer-Absorptionsspektroskopie: Eine neue Generation von Geräten und Algorithmen," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 1996).
  14. C. Kern, "Applicability of light-emitting diodes as light sources for active long path DOAS measurements: a feasibility study," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).
  15. Luxeon III Star Power Light Source, Technical Datasheet DS46 (Luxeon,2004); http://www.lumileds.com/pdfs/DS46.pdf.
  16. LOT-Oriel-Group, Quartz Tungsten Lamps & Spectral Irradiance Data, Europe (2005).
  17. Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties, Vol. 7 of Thermophysical Properties of Matter, (IFI/Plenum, 1970).
  18. E. Hecht, Optics (Addison Wesley, 2001).
  19. D. D. Manchon, A. S. Barker, J. P. Dean, and R. B. Zetterstrom, "Optical studies of the phonons and electrons in gallium nitride," Solid State Commun. 8, 1227-1231 (1970). [CrossRef]
  20. E. Ejder, "Refractive Index of GaN," Phys. Status Solidi A 6, 445-448 (1971). [CrossRef]
  21. V. A. Savastenko and A. U. Sheleg, "Study of the elastic properties of gallium nitride," Phys. Status Solidi A 48, K135-K139 (1978). [CrossRef]
  22. S. Kraus, "DOASIS: DOAS Intelligent System," Institute of Environmental Physics, University of Heidelberg, in cooperation with Hoffmann Messtechnik GmbH, Heidelberg (2004), http://www.iup.uni-heidelberg.de/bugtracker/projects/doasis/.
  23. W. Schneider, G. Tyndall, J. Burrows, and G. K. Moortgat, "Absorption cross-sections of NO2 in the UV and visible region (200-700 nm) at 298 K," J. Photochem. Photobiol. 40, 195-217 (1987). [CrossRef]
  24. P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, "New water vapor line parameters in the 26000-13000 cm−1 region," J. Quant. Spectrosc. Radiat. Transfer 74, 493-510 (2002). [CrossRef]
  25. A. R. Ravishankara and P. H. Wine, "Absorption cross sections for NO3 between 565 and 673 nm," Chem. Phys. Lett. 101, 73-78 (1983). [CrossRef]
  26. S. P. Sander, "Temperature dependence of the NO3 absorption spectrum," J. Phys. Chem. 90, 4135-4142 (1986). [CrossRef]
  27. A. Geyer, "The role of the nitrate radical in the boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2000).
  28. K. Levenberg, "A method for the solution of certain non-linear problems in least squares," Q. Appl. Math. 2, 164-168 (1944).
  29. D. W. Marquardt, "An algorithm for least squares estimation of non-linear parameters," J. Soc. Indust. Appl. Math. 11, 431-441 (1963). [CrossRef]
  30. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipies in C (Cambridge U. Press, 1986).
  31. H. Veitel, "Vertical profiles of NO2 and HONO in the boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2002).
  32. B. Rippel, "Vorarbeiten zu tomographischen Langeit-Spurenstoffmessungen in Heidelberg," diploma dissertation (Institute of Environmental Physics, University of Heidelberg, 2005).
  33. A. Geyer, B. Alicke, R. Ackermann, M. Martinez, H. Harder, W. Brune, P. di Carlo, E. Williams, T. Jobson, S. Hall, R. Shetter, and J. Stutz, "Direct observations of daytime NO3: Implications for urban boundary layer chemistry," J. Geosphys. Res. 108 (D12), 4368-4378 (2003). [CrossRef]
  34. S. Trick, "Formation of nitrous acid on urban surfaces: a physical-chemical perspective," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).
  35. O. S. Mueller de Vries, "The relative contribution of free radicals to the oxidation chain of dimethylsulphide in the marine boundary layer," Ph.D. dissertation (Institute of Environmental Physics, University of Heidelberg, 2004).
  36. V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska, and M. Asif Khan, "250 nm AlGaN light-emitting diodes," Appl. Phys. Lett. 85, 2175-2177 (2004). [CrossRef]
  37. J. P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J. W. Yang, and M. Asif Khan, "Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm," Appl. Phys. Lett. 81, 4910-4912 (2002). [CrossRef]
  38. J. P. Zhang, S. Wu, S. Rai, V. Mandeavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, "AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission," Appl. Phys. Lett. 83, 3456-3458 (2003). [CrossRef]
  39. A. Hanlon, P. M. Pattison, J. F. Kaeding, R. Sharma, P. Fini, and S. Nakamura, "292 nm AlGaN single-quantum well light emitting diodes grown on a transparent AIN base," Jpn. J. Appl. Phys. 2 , 42, 628-630 (2003). [CrossRef]
  40. A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S. R. Darvish, P. Kung, and M. Razeghi, "4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes," Appl. Phys. Lett. 83, 4701-4703 (2003). [CrossRef]
  41. G. Kipshidze, V. Kuryatkov, K. Zhu, B. Borisov, M. Holtz, S. Nikishin, and H. Temkin, "AIN/AlGaInN superlattice light emitting diodes at 280 nm," J. Appl. Phys. 93, 1363-1366 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited