OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 1 — Jan. 1, 2007
  • pp: 113–116

Self-mode-locked single-section Fabry–Perot semiconductor lasers at 1.56 μm

Weiguo Yang, Nicholas J. Sauer, Pietro G. Bernasconi, and Liming Zhang  »View Author Affiliations


Applied Optics, Vol. 46, Issue 1, pp. 113-116 (2007)
http://dx.doi.org/10.1364/AO.46.000113


View Full Text Article

Enhanced HTML    Acrobat PDF (766 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The mode-locking mechanism of a single-section multi-spatial-mode Fabry–Perot semiconductor laser is analyzed by the additive pulse mode-locking (APM) master equation model. Critical parameters of the equivalent saturable absorber as well as the self-phase modulation are estimated. The mode-locking operation regime in terms of pulse chirp and output power is predicted by the APM model and the prediction is shown to be in good agreement with the experimental results of a 40   GHz , 6.7   ps pulse width mode-locked operation at 1.56 μ m .

© 2007 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 14, 2006
Manuscript Accepted: July 31, 2006

Citation
Weiguo Yang, Nicholas J. Sauer, Pietro G. Bernasconi, and Liming Zhang, "Self-mode-locked single-section Fabry-Perot semiconductor lasers at 1.56 μm," Appl. Opt. 46, 113-116 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-1-113


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, "The Kuramoto model: a simple paradigm for synchronization phenomena," Rev. Mod. Phys. 77, 137-185 (2005). [CrossRef]
  2. L. Angelani, C. Conti, G. Ruocco, and F. Zamponi, "Glassy behavior of light," Phys. Rev. Lett. 96, 065702 (2006).
  3. D. Gloge and T. P. Lee, "Signal structure of continuously self-pulsing GaAs laser," IEEE J. Quantum Electron. 7, 43-45 (1971). [CrossRef]
  4. K. Ogawa and R. S. Vodhanel, "Measurements of mode partition noise of laser diodes," IEEE J. Quantum Electron. 18, 1090-1093 (1982). [CrossRef]
  5. K. Otsuka, "Multimode laser dynamics," Prog. Quantum Electron. 23, 97-129 (1999). [CrossRef]
  6. G. P. Agrawal, Fiber-Optic Communication Systems, (Wiley, 1992), Chap. 3.
  7. P. Mandel, A. Nguyen, and K. Otsuka, "Universal dynamical properties of three-mode Fabry-Perot lasers," Quantum Semiclassic Opt. 9, 365-380 (1997). [CrossRef]
  8. S. Wieczorek, T. B. Simpson, B. Krauskopf, and D. Lenstra, "Global quantitative predictions of complex laser dynamics," Phys. Rev. E 65, 045207 (2002).
  9. L. F. Tiemeijer, P. I. Kuindersma, P. J. A. Thijs, and G. L. J. Rikken, "Passive FM locking in InGaAsP semiconductor lasers," IEEE J. Quantum Electron. 25, 1385-1392 (1989). [CrossRef]
  10. K. Sato, "Optical pulse generation using Fabry-Pérot lasers under continuous-wave operation," IEEE J. Sel. Top. Quantum. Electron. 9, 1288-1293 (2003). [CrossRef]
  11. C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, J. Landreau, F. Lelarge, and A. Ramdane, "Sub-picosecond pulse generation at 134 GHz using a quantum dash-based Fabry-Pérot laser emitting at 1.56 μm," presented at OFC2006, March 2006, Anaheim, Calif., paper OThG1.
  12. E. A. Avrutin, J. H. Marsh, and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models, and applications," IEE Proc. Optoelectron. 147, 251-278 (2000). [CrossRef]
  13. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000). [CrossRef] [PubMed]
  14. W. Yang, "Self-starting mode locking by multi-spatial-mode active waveguiding," Opt. Lett. 31, 2287-2289 (2006). [CrossRef] [PubMed]
  15. M. Zirngibl, C. H. Joyner, and B. Glance, "Digitally tunable channel dropping filter equalizer base on waveguide grating router and optical amplifier integration," IEEE Photon. Technol. Lett. 6, 513-515 (1994). [CrossRef]
  16. D. Van Thourhout, P. G. Bernasconi, B. I. Miller, W. Yang, L. Zhang, N. J. Sauer, L. Stulz, and S. Cabot, "Novel geometry for an integrated channel selector," IEEE J. Sel. Top. Quantum. Electron. 8, 1211-1214 (2002). [CrossRef]
  17. P. Bernasconi, L. Zhang, W. Yang, N. Sauer, L. L. Buhl, J. H. Sinsky, I. Kang, S. Chandrasekhar, and D. T. Neilson, "Monolithically integrated 40-Gb/s switchable wavelength converter," J. Lightwave Technol. 24, 71-76 (2006). [CrossRef]
  18. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode locking," J. Opt. Soc. Am. B 8, 2068-2076 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited