OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 1 — Jan. 1, 2007
  • pp: 61–66

Stress birefringent, space-variant wave plates for vortex illumination

Alexis K. Spilman and Thomas G. Brown  »View Author Affiliations

Applied Optics, Vol. 46, Issue 1, pp. 61-66 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the use of stress birefringence in the creation of vortex illumination. A trifold symmetric stress pattern will provide an annular region that exhibits polarization vortices when illuminated with linearly polarized light and scalar vortices when illuminated with circularly polarized light. A finite element plane-stress model is used to analyze the space-variant anisotropy.

© 2007 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: June 29, 2006
Revised Manuscript: September 7, 2006
Manuscript Accepted: September 8, 2006

Alexis K. Spilman and Thomas G. Brown, "Stress birefringent, space-variant wave plates for vortex illumination," Appl. Opt. 46, 61-66 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Flossmann, U. T. Schwarz, M. Maier, and M. Dennis, "Polarization singularities from unfolding an optical vortex through a birefringent crystal," Phys. Rev. Lett. 95, 253901 (2005). [CrossRef] [PubMed]
  2. A. Estroff, Y. Fan, A. Bourov, and B. Smith, "Mask-induced polarization effects at high numerical aperture," J. Microlithogr. Microfabr. Microsyst. 4, 031107 (2005). [CrossRef]
  3. B. W. Smith and J. S. Cashmore, "Challenges in high NA, polarization, and photoresists," in Optical Microlithography XV, A. Yen, ed., Proc. SPIE 4691, 11-24 (2002). [CrossRef]
  4. D. G. Hall, "Vector-beam solutions of Maxwell's wave equation," Opt. Lett. 21, 9-11 (1996). [CrossRef] [PubMed]
  5. R. H. Jordan and D. G. Hall, "Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution," Opt. Lett. 19, 427-429 (1994). [CrossRef] [PubMed]
  6. P. L. Greene and D. G. Hall, "Diffraction characteristics of the azimuthal Bessel-Gauss beam," J. Opt. Soc. Am. A 13, 962-966 (1996). [CrossRef]
  7. P. L. Greene and D. G. Hall, "Properties and diffraction of vector Bessel-Gauss beams," J. Opt. Soc. Am. A 15, 3020-3027 (1998). [CrossRef]
  8. P. L. Greene and D. G. Hall, "Focal shift in vector beams," Opt. Express 4, 411-419 (1999). [CrossRef] [PubMed]
  9. C. J. R. Sheppard and S. Saghafi, "Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation," Opt. Lett. 24, 1543-1545 (1999). [CrossRef]
  10. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  11. D. P. Biss and T. G. Brown, "Cylindrical vector beam focusing through a dielectric surface," Opt. Express 9, 490-497 (2001). [CrossRef] [PubMed]
  12. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  13. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "The focus of light-theoretical calculation and experimental topographic reconstruction," Appl. Phy. B 72, 109-113 (2001).
  14. E. G. Churin, J. Hossfeld, and T. Tschudi, "Polarization configurations with singular point formed by computer-generated holograms," Opt. Commun. 99, 13-17 (1993). [CrossRef]
  15. M. Stalder and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt. Lett. 21, 1948-1949 (1996). [CrossRef] [PubMed]
  16. T. Grosjean, D. Courjon, and M. Spajer, "An all-fiber device for generating radially and other polarized light beams," Opt. Commun. 203, 1-5 (2002). [CrossRef]
  17. D. P. Biss, "Focal field interactions from cylindrical vector beams," Ph.D. dissertation (University of Rochester, 2005).
  18. K. S. Youngworth, "Inhomogeneous polarization in confocal microscopy," Ph.D. dissertation (University of Rochester, 2002).
  19. K. S. Youngworth, D. P. Bliss, and T. G. Brown, "Point spread functions for particle imaging using inhomogeneous polarization in scanning optical microscopy," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VIII, J.-A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 4261, 14-23 (2001). [CrossRef]
  20. Q. W. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002). [PubMed]
  21. K. B. Doyle, V. L. Genberg, and G. J. Michels, Integrated Optomechanical Analysis, Vol. TT58 of SPIE Tutorial Texts in Optical Engineering (SPIE Press, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited