OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 1 — Jan. 1, 2007
  • pp: 84–86

Single-beam holography for Ag nanoparticle-embedded two-dimensional binary metallodielectric photonic crystals

Yi Yang, Suhuai Zhang, and Guo Ping Wang  »View Author Affiliations

Applied Optics, Vol. 46, Issue 1, pp. 84-86 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Absolute photonic bandgaps of photonic crystals can be increased by reducing the structural symmetry and∕or by enhancing the refractive index contrast. We have experimentally demonstrated a single-beam holography for creating Ag nanoparticle-embedded 2D binary photonic microstructures by adding a different diameter rod in the center of each original 2D honeycomb lattice for simultaneously realizing both symmetry reduction and the enhancement of the index contrast of PC structures.

© 2007 Optical Society of America

OCIS Codes
(090.4220) Holography : Multiplex holography
(160.2900) Materials : Optical storage materials
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:

Original Manuscript: May 22, 2006
Revised Manuscript: July 18, 2006
Manuscript Accepted: September 7, 2006

Yi Yang, Suhuai Zhang, and Guo Ping Wang, "Single-beam holography for Ag nanoparticle-embedded two-dimensional binary metallodielectric photonic crystals," Appl. Opt. 46, 84-86 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Photonic bound states in periodic dielectric materials," Phys. Rev. B 44, 13772-13774 (1991). [CrossRef]
  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  4. C. M. Anderson and K. P. Giapis, "Larger two-dimensional photonic bandgaps," Phys. Rev. Lett. 77, 2949-2952 (1996). [CrossRef] [PubMed]
  5. C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, "Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters," Nature 396, 444-446 (1998). [CrossRef]
  6. K. P. Velikov, C. G. Christova, R. P. A. Dullens, and A. van Blaaderen, "Layer-by-layer growth of binary colloidal crystals," Science 296, 106-109 (2002). [CrossRef] [PubMed]
  7. L. Yuan, G. P. Wang, and X. Huang, "Arrangements of four beams for any Bravais lattice," Opt. Lett. 28, 1769-1771 (2003). [CrossRef] [PubMed]
  8. D. B. Mei, B. Y. Cheng, W. Hu, Z.-L. Li, and D. Z. Zhang, "Three-dimensional ordered patterns by light interference," Opt. Lett. 20, 429-431 (1995). [CrossRef] [PubMed]
  9. L. Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, "Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography," Appl. Phys. Lett. 86, 241102-241104 (2005). [CrossRef]
  10. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 526-528 (2003). [CrossRef]
  11. D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-205107 (2003). [CrossRef]
  12. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y.-J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004). [CrossRef]
  13. O. Toader, T. Y. M. Chan, and S. John, "Photonic bandgap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905-042908 (2004). [CrossRef] [PubMed]
  14. M. Bockstaller, R. Kolb, E. L. Thomas, "Metallodielectric photonic crystals based on diblock copolymers," Adv. Mater. 13, 1783-1786 (2001). [CrossRef]
  15. G. P. Wang, Y. Yi, and W. Lin, "Tunable and omnidirectional photonic bandgap properties of one-dimensional photonic crystals fabricated by holography," J. Opt. Soc. Am. B 21, 554-561 (2004). [CrossRef]
  16. G. P. Wang, C. Tan, Y. Yi, and H. Shan, "Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single coutinuous wavelength laser beam," J. Mod. Opt. 50, 2155-2558 (2003).
  17. Y. Yang, G. P. Wang, J. Xie, and S. Zhang, "Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography," Appl. Phys. Lett. 86, 173108-173110 (2005). [CrossRef]
  18. I. Ei-Kady, M. M. Sigalas, R. Biswas, K. M. Ko, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299-15302 (2000). [CrossRef]
  19. W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, "Robust photonic bandgap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000). [CrossRef] [PubMed]
  20. H. M. Smith, Holographic Recording Materials (Springer-Verlag, 1977), Chap. 2, pp. 49-50.
  21. J. Xie, J. Z. Wen, G. P. Wang, and J. B. Wang, "Large area deposition of homogeneous metallic nanoparticles on polymer film and their applications," Acta Phys. Sin. 54, 242-244 (2005).
  22. S. Qu, J. Qiu, C. Zhao, X. Jiang, H. Zeng, C. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004). [CrossRef]
  23. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, "Multicolour photochromisms of TiO2 films loaded with silver nanoparticles," Nat. Mater. 2, 29-33 (2003). [CrossRef] [PubMed]
  24. N. Suzuki, Y. Tomita, and T. Kojima, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photonpolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002). [CrossRef]
  25. Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited