OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 10 — Apr. 1, 2007
  • pp: 1597–1603

Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry

Nanguang Chen  »View Author Affiliations

Applied Optics, Vol. 46, Issue 10, pp. 1597-1603 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1281 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The controlled Monte Carlo method is generalized to model photon migration in turbid media of arbitrary geometries. Its implementation for the reflection geometry is exemplified in this paper. The most probable diffuse direction of light is used as the local attractive vector that serves as the basis of biased sampling of scattering angles. Consequently, path-length resolved photon trajectories can be generated with a significantly improved efficiency. We report a more than 29 times reduction in simulation time for early arriving photons in a typical configuration.

© 2007 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(290.7050) Scattering : Turbid media

ToC Category:
Diffuse optical imaging

Original Manuscript: April 27, 2006
Revised Manuscript: September 4, 2006
Manuscript Accepted: September 29, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Nanguang Chen, "Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry," Appl. Opt. 46, 1597-1603 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multichannel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005). [CrossRef] [PubMed]
  2. P. Taroni, L. Spinelli, A. Torricelli, A. Pifferi, G. M. Danesini, and R. Cubeddu, "Multiwavelength time domain optical mammography," Technol. Cancer Res. Treat. 4, 527-537 (2005). [PubMed]
  3. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003). [CrossRef] [PubMed]
  4. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40, 3278-3287 (2001). [CrossRef]
  5. D. J. Hall, J. C. Hebden, and D. T. Delpy, "Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method," Appl. Opt. 36, 7270-7276 (1997). [CrossRef]
  6. T. Tanifuji, T. Ohtomo, D. Ohmori, and T. Ishikawa, "Time-resolved reflectance of an optical pulse in adult heads based on the finite difference time domain (FDTD) analysis," Opt. Rev. 12, 42-45 (2005). [CrossRef]
  7. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, "Three-dimensional optical tomography of the premature infant brain," Phys. Med. Biol. 47, 4155-4166 (2002). [CrossRef] [PubMed]
  8. J. P. van Houten, D. A. Benaron, S. Spilman, and D. K. Stevenson, "Imaging brain injury using time-resolved near-infrared light scanning," Pediatr. Res. 39, 470-476 (1996). [CrossRef] [PubMed]
  9. F. Chauchard, S. Roussel, J. M. Roger, V. Bellon-Maurel, C. Abrahamsson, T. Svensson, S. Andersson-Engels, and S. Svanberg, "Least-squares support vector machines modelization for time-resolved spectroscopy," Appl. Opt. 44, 7091-7097 (2005). [CrossRef] [PubMed]
  10. A. H. Hielscher, A. D. Klose, and K. M. Hanson, "Gradient-based iterative image reconstruction scheme for time-resolved optical tomography," IEEE Trans. Med. Imaging 18, 262-271 (1999). [CrossRef] [PubMed]
  11. L. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  12. J. Heiskala, I. Nissila, T. Neuvonen, S. Jarvenpaa, and E. Somersalo, "Modeling anisotropic light propagation in a realistic model of the human head," Appl. Opt. 44, 2049-2057 (2005). [CrossRef] [PubMed]
  13. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, "Three-dimensional Monte Carlo code for photon migration through complex heterogeneous medical including the adult human head," Opt. Express 10, 159-170 (2002). [PubMed]
  14. L. Marti-Lopez, J. Bouza-Dominguez, and J. C. Hebden, "Interpretation of the failure of the time-independent diffusion equation near a point source," Opt. Commun. 242, 23-43 (2004). [CrossRef]
  15. E. Tinet, S. Avrillier, and J. M. Tualle, "Fast semianalytic Monte Carlo simulation for time-resolved light propagation in turbid media," J. Opt. Soc. Am. A 13, 1903-1915 (1996). [CrossRef]
  16. N. G. Chen and J. Bai, "Estimation of quasi-straight-forward propagating light in tissue," Phys. Med. Biol. 44, 1669-1676 (1999). [CrossRef] [PubMed]
  17. N. G. Chen and Q. Zhu, "Optical tomography with early arriving photons: sensitivity and resolution analysis," Proc. SPIE 4250, 37-44 (2001).
  18. B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, "Initial assessment of a simple system for frequency-domain diffuse optical tomography," Phys. Med. Biol. 40, 1709-1729 (1995). [CrossRef] [PubMed]
  19. Y. Xu, N. Iftimia, H. B. Jiang, L. L. Key, and M. B. Bolster, "Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography," Opt. Express 8, 447-451 (2001). [CrossRef] [PubMed]
  20. N. G. Chen, P. Guo, S. Yan, D. Piao, and Q. Zhu, "Simultaneous near-infrared diffusive light and ultrasound imaging," Appl. Opt. 40, 6367-6280 (2001). [CrossRef]
  21. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. G. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005). [CrossRef] [PubMed]
  22. J. Bai, T. X. Gao, Y. Kui, and N. G. Chen, "Locating inhomogeneities in tissue by using the most probable diffuse path of light," J. Biomed. Opt. 10, 024024 (2005). [CrossRef] [PubMed]
  23. N. G. Chen and J. Bai, "Monte Carlo approach to modeling of boundary conditions for the diffusion equation," Phys. Rev. Lett. 80, 5321-5324 (1998). [CrossRef]
  24. J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, "Kirchhoff approximation for diffusive waves," Phys. Rev. E 64, 051917 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited