OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 10 — Apr. 1, 2007
  • pp: 1633–1640

Significance of tissue anisotropy in optical tomography of the infant brain

Juha Heiskala, Tuomas Neuvonen, P. Ellen Grant, and Ilkka Nissilä  »View Author Affiliations


Applied Optics, Vol. 46, Issue 10, pp. 1633-1640 (2007)
http://dx.doi.org/10.1364/AO.46.001633


View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the effect of tissue anisotropy in optical tomography of neonates. A Monte Carlo method capable of modeling photon migration in an arbitrary 3D tissue model with spatially varying optical properties and tissue anisotropy is used for simulating measurements of neonates. Anatomical and diffusion tensor magnetic resonance imaging of neonates are used for creating the anatomical models. We find that tissue anisotropy affects the measured signal and the pattern of sensitivity in optical measurements.

© 2007 Optical Society of America

OCIS Codes
(170.5280) Medical optics and biotechnology : Photon migration
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Diffuse optical imaging

History
Original Manuscript: July 3, 2006
Manuscript Accepted: August 10, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Juha Heiskala, Tuomas Neuvonen, P. Ellen Grant, and Ilkka Nissilä, "Significance of tissue anisotropy in optical tomography of the infant brain," Appl. Opt. 46, 1633-1640 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-10-1633


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "Application of the finite element method for the forward model in infrared absorption imaging," in Mathematical Methods in Medical Imaging, D. C. Wilson and J. N. Wilson, eds., Proc. SPIE 1768, 97-108 (1992). [CrossRef]
  2. G. Marquez, L.-H. Wang, S.-P. Lin, J. A. Schwartz, and S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," Appl. Opt. 37, 798-804 (1998). [CrossRef]
  3. S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, "Anisotropy of light propagation in human skin," Phys. Med. Biol. 45, 2873-2886 (2000). [CrossRef] [PubMed]
  4. A. Kienle, F. K. Forster, R. Diebolder, and H. Hibst, "Light propagation in dentin: influence of microstructure on anisotropy," Phys. Med. Biol. 48, N7-N14 (2003). [CrossRef] [PubMed]
  5. J. Heino, S. Arridge, J. Sikora, and E. Somersalo, "Anisotropic effects in highly scattering media," Phys. Rev. E 68, 031908 (2003). [CrossRef]
  6. L. Dagdug, G. H. Weill, and A. H. Gandjbakhche, "Effects of anisotropic optical properties on photon migration in structured tissues," Phys. Med. Biol. 48, 1361-1370 (2003). [CrossRef] [PubMed]
  7. J. Heiskala, I. Nissilä, T. Neuvonen, S. Järvenpää, and E. Somersalo, "Modeling anisotropic light propagation in a realistic model of the human head," Appl. Opt. 44, 2049-2057 (2005). [CrossRef] [PubMed]
  8. R. C. McKinstry, A. Marthur, J. H. Miller, A. Ozcan, A. Z. Snyder, G. L. Schefft, C. R. Almli, S. I. Shiran, T. E. Conturo, and J. J. Neil, "Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI," Cereb. Cortex 12, 1237-1243 (2002). [CrossRef] [PubMed]
  9. F. Schmidt, "Development of a time-resolved optical tomography system for neonatal brain imaging," Ph.D. dissertation (University of London, 1999).
  10. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo model of light propagation in tissue," in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Müller and D. H. Sliney, eds. (SPIE IS, 1989), Vol. 5, pp. 102-111.
  11. L. H. Wang, S. L. Jacques, and L.-Q. Zheng, "Monte Carlo modeling of photon transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  12. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogenous media including the adult human head," Opt. Express 10, 159-170 (2002). [PubMed]
  13. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001). [CrossRef]
  14. J. Spanier and E. M. Gelbardm, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, 1969).
  15. Y. Phaneendra Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method, J. Biomed. Opt. 9, 1002-1012 (2004). [CrossRef]
  16. General Electric Company, 3135 Easton Turnpike, Fairfield, Conn. 06828-0001.
  17. P. J. Basser and C. Pierpaoli, "Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI," J. Magn. Reson. Ser B 111, 209-219 (1996). [CrossRef]
  18. D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee, "Spatial transformations of diffusion tensor magnetic resonance images," IEEE Trans. Med. Imaging 20, 1131-1139 (2001). [CrossRef] [PubMed]
  19. S. J. Kiebel, J. Ashburner, J. B. Poline, and K. J. Friston, "MRI and PET coregistration--a cross validation of statistical parametric mapping and automated image registration," Neuroimage 5, 271-279 (1997). [CrossRef] [PubMed]
  20. M. Jenkinson and S. Smith, "A global optimisation method for robust affine registration of brain images," Med. Image Anal. 5, 143-156 (2001). [CrossRef] [PubMed]
  21. K. Van Leemput and J. Hämäläinen, "A cross-platform software framework for medical image processing," in Proceedings of the Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Part II (Springer, 2004), pp. 1091-1092.
  22. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21-31 (1997). [CrossRef] [PubMed]
  23. Biomediucm Bioinformatics Unit, Haartmaninkatu 8, FIN-00290 Helsinki, Finland, http://home.bioinfo.helsinki.fi.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited