OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 10 — Apr. 1, 2007
  • pp: 1679–1685

Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results

Pouyan Mohajerani, Ali A. Eftekhar, Jiandong Huang, and Ali Adibi  »View Author Affiliations


Applied Optics, Vol. 46, Issue 10, pp. 1679-1685 (2007)
http://dx.doi.org/10.1364/AO.46.001679


View Full Text Article

Enhanced HTML    Acrobat PDF (516 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method to accurately localize small fluorescent objects within the tissue using fluorescent diffuse optical tomography (FDOT). The proposed method exploits the localized or sparse nature of the fluorophores in the tissue as a priori information to considerably improve the accuracy of the reconstruction of fluorophore distribution. This is accomplished by minimizing a cost function that includes the L 1 norm of the fluorophore distribution vector. Experimental results for a milk-based phantom using a fiber-based cw FDOT system demonstrate the capability of this method in accurately localizing small fluorescent objects deep in the phantom.

© 2007 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Diffuse optical imaging

History
Original Manuscript: July 5, 2006
Revised Manuscript: November 30, 2006
Manuscript Accepted: December 1, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Pouyan Mohajerani, Ali A. Eftekhar, Jiandong Huang, and Ali Adibi, "Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results," Appl. Opt. 46, 1679-1685 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-10-1679


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, 1-43 (2005). [CrossRef]
  2. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, "Diffuse optical tomography of highly heterogeneous media," IEEE Trans. Med. Imaging 20, 470-478 (2001). [CrossRef] [PubMed]
  3. A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).
  4. M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005). [CrossRef] [PubMed]
  5. K. Licha, "Contrast agents for optical imaging," Top. Curr. Chem. 222, 1-29 (2002). [CrossRef]
  6. J. V. Frangioni, "In vivo near-infrared fluorescence imaging," Curr. Opin. Chem. Biol. 7, 626-634 (2003). [CrossRef] [PubMed]
  7. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents," Curr. Opin. Chem. Biol. 6, 642-650 (2002). [CrossRef] [PubMed]
  8. R. J. Gillies, "In vivo molecular imaging," J. Cell. Biochem. 87, 231-238 (2002). [CrossRef]
  9. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  10. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002). [CrossRef]
  11. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003). [CrossRef] [PubMed]
  12. G. Zacharakis, J. Ripoll, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005). [CrossRef] [PubMed]
  13. A. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005). [CrossRef] [PubMed]
  14. J. H. Chang, H. L. Graber, and R. L. Barbour, "Imaging of fluorescence in highly scattering media," IEEE Trans. Biomed. Eng. 44, 810-822 (1997). [CrossRef] [PubMed]
  15. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996). [CrossRef] [PubMed]
  16. X. D. Li, M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt. 35, 3746-3758 (1996). [CrossRef] [PubMed]
  17. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002). [CrossRef]
  18. E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging and tomography for cancer diagnostics," in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2004), pp. 1482-1485.
  19. W. B. Pogue and T. Hasan, "Targeting in photodynamic therapy and photo-imaging," Opt. Photon. News 14, 36-43 (2003). [CrossRef]
  20. C. D' Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in turbid media," Phys. Med. Biol. 50, 2313-2327 (2005). [CrossRef]
  21. R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries," J. Biomed. Opt. 11, 044007 (2006). [CrossRef] [PubMed]
  22. E. L. Hull, M. G. Nichols, and T. H. Foster, "Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance," Appl. Opt. 37, 2755-2765 (1998). [CrossRef]
  23. M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities," J. Lumin. 60, 281-268 (1994). [CrossRef]
  24. M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, "Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis," Appl. Phys. Lett. 89, 133902 (2006). [CrossRef]
  25. A. Eidsath, V. Chernomordik, A. Gandjbakhche, P. Smith, and A. Russo, "Three-dimensional localization of fluorescent masses deeply embedded in tissue," Phys. Med. Biol. 47, 4079-4092 (2002). [CrossRef] [PubMed]
  26. Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, "Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies," Opt. Lett. 28, 2070-2072 (2003). [CrossRef] [PubMed]
  27. B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, "Precision localization of hidden absorbers in body tissues with phase-array optical systems," Rev. Sci. Instrum. 67, 4324-4332 (1996). [CrossRef]
  28. H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998). [CrossRef]
  29. B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, "Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection," Opt. Express 1, 391-403 (1997). [CrossRef] [PubMed]
  30. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Phys. Med. Biol. 22, 1779-1792 (1995).
  31. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A finite element approach for modeling photon transport in tissue," Phys. Med. Biol. 20, 299-309 (1993).
  32. S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, "Approximation errors and model reduction with an application in optical diffusion tomography," Inverse Probl. 22, 175-195 (2006). [CrossRef]
  33. S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM (Soc. Ind. Appl. Math.) Rev. 43, 129-159 (2001). [CrossRef]
  34. J. Wu, Y. Wang, L. Perelman, I. Itzkan, I. Ramachandra, R. Dasari, and M. S. Feld, "Time-resolved multichannel imaging of fluorescent objects embedded in turbid media," Opt. Lett. 20, 489-491 (1995). [CrossRef] [PubMed]
  35. A. B. Milstein, "Imaging of near-infrared fluorescence, absorption, and scattering in turbid media," Ph.D. dissertation (Purdue University, West Lafayette, Ind., 2004).
  36. A. Soubret and V. Ntziachristos, "Fluorescence molecular tomography in the presence of background fluorescence," Phys. Med. Biol. 51, 3983-4001 (2006). [CrossRef] [PubMed]
  37. M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, "Effects of background fluorescence in fluorescence molecular tomography," Appl. Opt. 44, 5468-5474 (2005). [CrossRef] [PubMed]
  38. J. H. Chang, H. L. Graber, and R. L. Barbour, "Improved reconstruction algorithm for luminescence optical tomography when background lumiphore is present," Appl. Opt. 37, 3547-3552 (1998). [CrossRef]
  39. P. Mohajerani (Department of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Station, N.W., Atlanta, GA, 30332). A. A. Eftekhar, and A. Adibi are preparing a manuscript to be called "Localization of small fluorescent objects in tissue in the presence of diffuse background fluorescence."
  40. M. D. Waterworth, B. J. Joblin, T. van Doorn, and H. E. Niesler, "Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging," Aust. Phys. Eng. Sci. Med. 18, 39-44 (1995).
  41. J. Christensen, L. Norgaard, R. Bro, and S. B. Engelsen, "Multivariate autofluorescence of intact food systems," Chem. Rev. 106, 1979-1994 (2006). [CrossRef] [PubMed]
  42. L. S. Zhang, L. Zhang, C. P. Zhang, S. W. Qi, T. Xu, and J. G. Tian, "Measurements of absorption and anisotropy coefficients of the fat emulsion intralipid-10%," Chin. Phys. Lett. 21, 2517-2520 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited