OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 10 — Apr. 1, 2007
  • pp: 1717–1725

In vivo time-resolved reflectance spectroscopy of the human forehead

Daniela Comelli, Andrea Bassi, Antonio Pifferi, Paola Taroni, Alessandro Torricelli, Rinaldo Cubeddu, Fabrizio Martelli, and Giovanni Zaccanti  »View Author Affiliations

Applied Optics, Vol. 46, Issue 10, pp. 1717-1725 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (714 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an in vivo broadband spectroscopic characterization of the human forehead. Absorption and scattering properties are measured on five healthy volunteers at five different interfiber distances, using time-resolved diffuse spectroscopy and interpreting data with a model of the diffusion equation for a homogeneous semi-infinite medium. A wavelength-tunable mode-locked laser and time-correlated single-photon counting detection are employed, enabling fully spectroscopic measurements in the range of 700–1000 nm. The results show a large variation in the absorption and scattering properties of the head depending on the subject, whereas intrasubject variations, assessed at different interfiber distances, appear less relevant, particularly for what concerns the absorption coefficient. The high intersubject variability observed indicates that a unique set of optical properties for modeling the human head cannot be used correctly. To better interpret the results of the analysis of in vivo measurements, we performed a set of four-layer model Monte Carlo simulations based on different data sets for the optical properties of the human head, partially derived from the literature. The analysis indicated that, when simulated time-resolved curves are fitted with a homogeneous model for the photon migration, the retrieved absorption and reduced scattering coefficients are much closer to superficial layer values (i.e., scalp and skull) than to deeper layer ones (white and gray matter). In particular, for the shorter interfiber distances, the recovered values can be assumed as a good estimate of the optical properties of the first layer.

© 2007 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.7050) Medical optics and biotechnology : Turbid media
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Diffuse optical imaging

Original Manuscript: July 18, 2006
Revised Manuscript: October 18, 2006
Manuscript Accepted: November 17, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Daniela Comelli, Andrea Bassi, Antonio Pifferi, Paola Taroni, Alessandro Torricelli, Rinaldo Cubeddu, Fabrizio Martelli, and Giovanni Zaccanti, "In vivo time-resolved reflectance spectroscopy of the human forehead," Appl. Opt. 46, 1717-1725 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For latest results see Biomedical Topical Meetings on CD-ROM (Optical Society of America, 2006).
  2. D. A. Boas and R. D. Frostig, "Optics in neuroscience," J. Biomed. Opt. 10, 011001 (2005). [CrossRef] [PubMed]
  3. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  4. H. Kostron, A. Obwegeser, and R. Jakober, "Photodynamic therapy in neurosurgery: a review," J. Photochem. Photobiol. B 36, 157-168 (1996). [CrossRef]
  5. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu "In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy," Phys. Med. Biol. 46, 2227-2237 (2001). [CrossRef] [PubMed]
  6. M. Firbank, C. E. Elwell, C. E. Cooper, and D. T. Delpy, "Experimental and theoretical comparison of NIR spectroscopy measurements of cerebral hemoglobin changes," J. Appl. Physiol. 85, 1915-1921 (1998). [PubMed]
  7. J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, "Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach," J. Biomed. Opt. 9, 221-229 (2004). [CrossRef] [PubMed]
  8. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, "Multi-channel time-resolved system for functional near infrared spectroscopy," Opt. Express 14, 5418-5432 (2006). [CrossRef] [PubMed]
  9. J. Selb, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 011013 (2005). [CrossRef] [PubMed]
  10. G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002). [CrossRef] [PubMed]
  11. A. Villringer and B. Chance, "Noninvasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997). [CrossRef] [PubMed]
  12. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  13. Y. Fukui, Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003). [CrossRef] [PubMed]
  14. E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003). [CrossRef] [PubMed]
  15. E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal," Appl. Opt. 42, 2915-2922 (2003). [CrossRef] [PubMed]
  16. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, "Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range," Phys. Med. Biol. 47, 2059-2073 (2002). [CrossRef] [PubMed]
  17. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999). [CrossRef]
  18. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, "An investigation of light transport through scattering bodies with non-scattering regions," Phys. Med. Biol. 41, 767-783 (1996). [CrossRef] [PubMed]
  19. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998). [CrossRef] [PubMed]
  20. H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, "Optical tomography in the presence of void regions," J. Opt. Soc. Am. A 17, 1659-1670 (2000). [CrossRef]
  21. E. Okada and D. T. Delpy, "Effect of discrete scatterers in CSF layer on optical path length in the brain," in Diffuse Spectroscopy and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels and J. G. Fujimoto, eds., Proc. SPIE 4160, 196-203 (2000). [CrossRef]
  22. A. Custo, W. M. Wells, A. H. Barnett, E. M. C. Hillman, and D. A. Boas, "Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging," Appl. Opt. 45, 4747-4755 (2006). [CrossRef] [PubMed]
  23. A. H. Hielscher, H. Liu, B. Chance, F. K. Tittel, and S. L. Jacques, "Time-resolved photon emission from layered turbid media," Appl. Opt. 35, 719-728 (1996). [CrossRef] [PubMed]
  24. F. Martelli, A. Sassaroli, G. Del Bianco, S. Yamada, and G. Zaccanti, "Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method," Phys. Rev. E 67, 056623 (2003). [CrossRef]
  25. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, "Noninvasive determination of the optical properties of two-layered turbid media" Appl. Opt. 37, 779-791 (1998). [CrossRef]
  26. A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, and D. A. Boas "Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging," Appl. Opt. 42, 3095-3108 (2003). [CrossRef]
  27. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Time-resolved reflectance spectroscopy in tissues," in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Muller, A. Roggan, and D. H. Sliney, eds., Proc. SPIE 3601, 486-490 (1999). [CrossRef]
  28. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, "Performance assessment of photon migration instruments: the MEDPHOT protocol," Appl. Opt. 44, 2104-2114 (2005). [CrossRef] [PubMed]
  29. M. S. Patterson, B. Chance, and B. C. Wilson, "Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  30. R. C. Haskell, L. O. Svasaand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994). [CrossRef]
  31. K. Furutsu and Y. Yamada, "Diffusion approximation for a dissipative random medium and the applications," Phys. Rev. E 50, 3634-3640 (1994). [CrossRef]
  32. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625-1633 (1996). [CrossRef] [PubMed]
  33. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, "Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media," J. Biomed. Opt. 8, 512-516 (2003). [CrossRef] [PubMed]
  34. F. Martelli, A. Sassaroli, Y. Yamada, and G. Zaccanti, "Analytical approximate solutions of the time-domain diffusion equation in layered slabs," J. Opt. Soc. Am. A 19, 71-80 (2002). [CrossRef]
  35. P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Absorption properties of breast: the contribution of collagen," presented at the Biomedical Optics Topical Meeting, Fort Lauderdale, Fla. (19-22 March 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited