OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 10 — Apr. 1, 2007
  • pp: 1742–1753

Empirical model functions to calculate hematocrit-dependent optical properties of human blood

Martina Meinke, Gerhard Müller, Jürgen Helfmann, and Moritz Friebel  »View Author Affiliations

Applied Optics, Vol. 46, Issue 10, pp. 1742-1753 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1908 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The absorption coefficient, scattering coefficient, and effective scattering phase function of human red blood cells (RBCs) in saline solution were determined for eight different hematocrits (Hcts) between 0.84% and 42.1% in the wavelength range of 250 1100   nm using integrating sphere measurements and inverse Monte Carlo simulation. To allow for biological variability, averaged optical parameters were determined under flow conditions for ten different human blood samples. Based on this standard blood, empirical model functions are presented for the calculation of Hct-dependent optical properties for the RBCs. Changes in the optical properties when saline solution is replaced by blood plasma as the suspension medium were also investigated.

© 2007 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(290.5820) Scattering : Scattering measurements
(290.7050) Scattering : Turbid media
(300.1030) Spectroscopy : Absorption

ToC Category:
Optical spectroscopic imaging and diagnostics

Original Manuscript: June 15, 2006
Revised Manuscript: September 28, 2006
Manuscript Accepted: October 16, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Martina Meinke, Gerhard Müller, Jürgen Helfmann, and Moritz Friebel, "Empirical model functions to calculate hematocrit-dependent optical properties of human blood," Appl. Opt. 46, 1742-1753 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36-46 (1999). [CrossRef]
  2. M. Friebel and M. Meinke, "Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements," J. Biomed. Opt. 10, 064019 (2005). [CrossRef]
  3. M. Friebel and M. Meinke, "Model function to calculate the refractive index of native hemoglobin in the range of 250-1100 nm dependent on concentration," Appl. Opt. 45, 2838-2842 (2006). [CrossRef] [PubMed]
  4. L. G. Lindberg and P. A. Oberg, "Optical properties of blood in motion," Opt. Eng. 32, 253-257 (1993). [CrossRef]
  5. M. Meinke, G. Müller, J. Helfmann, and M. Friebel, "Optical properties of platelets and blood plasma and their influence on the optical behaviour of whole blood in the visible to near infrared wavelength range," J. Biomed. Opt. 12, 014024 (2007). [CrossRef] [PubMed]
  6. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "The optical properties of blood in the near infrared spectral range," in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakura, and B. J. Tromberg, eds., Proc. SPIE 2678, 314-324 (1996). [CrossRef]
  7. M. Friebel, A. Roggan, G. Müller, and M. Meinke, "Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions," J. Biomed. Opt. 11, 031021 (2006).
  8. M. Hammer, A. N. Yaroslavsky, and D. Schweitzer, "A scattering phase function for blood with physiological haematocrit," Phys. Med. Biol. 46, N65-N69 (2001). [CrossRef] [PubMed]
  9. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements," J. Biomed. Opt. 4, 47-53 (1999). [CrossRef]
  10. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, "Single scattering by red blood cells," Appl. Opt. 37, 7410-7418 (1998). [CrossRef]
  11. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, "Different phase function approximations to determine optical properties of blood: a comparison," in Optical Diagnostics of Biological Fluids and Advanced Techniques in Analytical Cytology, A. V. Priezzhev, T. Asakura, and R. C. Leif, eds., Proc. SPIE 2982, 324-330 (1997). [CrossRef]
  12. A. Nilsson, P. Alsholm, A. Karlson, and S. Andersson-Engels, "T-matrix computation of light scattering by red blood cells," Appl. Opt. 37, 2735-2748 (1998). [CrossRef]
  13. J. M. Steinke and A. P. Sheperd, "Comparision of Mie theory and light scattering of red blood cells," Appl. Opt. 27, 4027-4033 (1988). [CrossRef] [PubMed]
  14. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, D. M. de Bruin, and T. G. van Leeuwen, "Hematocrit-dependence of the scattering coefficient of blood determined by optical coherence tomography," in Optical Coherence Tomography and Coherence Techniques II, W. Drexler, ed., Proc. SPIE 5861, 58610W (2005). [CrossRef]
  15. M. Meinke, I. Gersonde, M. Friebel, J. Helfmann, and G. Müller, "Chemometric determination of blood parameters using visible-near-infrared spectra," Appl. Spectrosc. 59, 826-835 (2005). [CrossRef] [PubMed]
  16. A. M. K. Enejder, J. Swartling, P. Aruna, and S. Andersson-Engels, "Influence of cell shape and aggregate formation on the optical properties of flowing whole blood," Appl. Opt. 42, 1384-1394 (2003). [CrossRef] [PubMed]
  17. J. Lademann, H. Richter, W. Sterry, and A. V. Priezzhev, "Diagnostic potential of erythrocytes aggregation and sedimentation measurements in whole blood," in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, A. V. Priezzhev and G. L. Cote, eds., Proc. SPIE 4263, 106-111 (2003). [CrossRef]
  18. R. Bayer, S. Çaglayan, and B. Günther, "Discrimination between orientation and elongation of RBC in laminar flow by means of laser diffraction," in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE 2136, 105-113 (1994). [CrossRef]
  19. A. H. Gandjbakhche, P. Mills, and P. Snabre, "Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension," Appl. Opt. 33, 1070-1078 (1994). [PubMed]
  20. A. Priezzhev, S. G. Khatsevich, and V. Lopatin, "Asymmetry of light backscattering from Couette flow of RBC suspensions: application for biomonitoring of blood samples," in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H. Foth, N. Krasner, R. Marchesini, and H. Podbielska, eds., Proc. SPIE 3567, 213-222 (1999). [CrossRef]
  21. A. Priezzhev, O. M. Ryaboshapka, N. N. Firsov, and I. V. Sirko, "Aggregation and disaggregation of erythrocytes in whole blood: study by backscattering technique," J. Biomed. Opt. 4, 76-84 (1999). [CrossRef]
  22. V. S. Lee and L. Tarassenko, "Absorption and multiple scattering by suspensions of aligned red blood cells," J. Opt. Soc. Am. A 8, 1135-1141 (1991). [CrossRef] [PubMed]
  23. L. Reynolds and N. McCormick, "Approximate two-parameter phase function for light scattering," J. Opt. Soc. Am. 70, 1206-1212 (1980). [CrossRef]
  24. A. Roggan, O. Minet, C. Schröder, and G. Müller, "Measurements of optical tissue properties using integrating sphere technique," in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, and P. van der Zee, eds., Proc. SPIE IS11, 149-165 (1993).
  25. R. N. Pittman, "In vivo photometric analysis of hemoglobin," Ann. Biomed. Eng. 14, 119-137 (1986). [CrossRef] [PubMed]
  26. V. Twersky, "Absorption and multiple scattering by biological suspensions," J. Opt. Soc. Am. 60, 1084-1093 (1970). [CrossRef] [PubMed]
  27. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 1, pp. 65-66.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited