OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 10 — Apr. 1, 2007
  • pp: 1860–1865

Random access three-dimensional two-photon microscopy

Balázs Rózsa, Gergely Katona, E. Sylvester Vizi, Zoltán Várallyay, Attila Sághy, Lásló Valenta, Pál Maák, Júlia Fekete, Ákos Bányász, and Róbert Szipőcs  »View Author Affiliations

Applied Optics, Vol. 46, Issue 10, pp. 1860-1865 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a two-photon microscope scheme capable of real-time, three-dimensional investigation of the electric activity pattern of neural networks or signal summation rules of individual neurons in a 0.6 m m × 0.6 m m × 0.2 m m volume of the sample. The points of measurement are chosen according to a conventional scanning two-photon image, and they are addressed by separately adjustable optical fibers. This allows scanning at kilohertz repetition rates of as many as 100 data points. Submicrometer spatial resolution is maintained during the measurement similarly to conventional two-photon microscopy.

© 2007 Optical Society of America

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(110.6880) Imaging systems : Three-dimensional image acquisition
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

ToC Category:
Optical microscopy techniques and technology

Original Manuscript: July 5, 2006
Revised Manuscript: December 21, 2006
Manuscript Accepted: December 21, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Balázs Rózsa, Gergely Katona, E. Sylvester Vizi, Zoltán Várallyay, Attila Sághy, Lásló Valenta, Pál Maák, Júlia Fekete, Ákos Bányász, and Róbert Szipőcs, "Random access three-dimensional two-photon microscopy," Appl. Opt. 46, 1860-1865 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. B. Rózsa, T. Zelles, E. S. Vizi, and B. Lendvai, "Distance-dependent scaling of calcium transients evoked by backpropagating spikes and synaptic activity in dendrites of hippocampal interneurons," J. Neurosci. 24, 661-670 (2004). [CrossRef] [PubMed]
  3. E. S. Vizi, B. Rózsa, A. Mayer, J. P. Kiss, T. Zelles, and B. Lendvai, "Further evidence for the functional role of nonsynaptic nicotinic acetylcholine receptors," Eur. J. Pharmacol. 500, 499-508 (2004). [CrossRef]
  4. L. Valenta, T. Volosin, J. Krol, J. Halas, P. Madarasz, B. Rózsa, and E. S. Vizi, "Application of precision engineering constructions in precision laboratory equipments," Gépészet ISBN 963 214 7480 pp. 723-727 (2004).
  5. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985). [CrossRef]
  6. B. Proctor and F. W. Wise, "Quartz prism sequence for reduction of cubic phase in a mode-locked TiAl2O3 laser," Opt. Lett. 17, 1295-1297 (1992). [CrossRef] [PubMed]
  7. S. W. Clark, F. Ö. Ilday, and F. W. Wise, "Fiber delivery of femtosecond pulses from a Ti:sapphire laser," Opt. Lett. 26, 1320-1322 (2001). [CrossRef]
  8. For details on laser performance, visit http://www.fslasers.com.
  9. P. Maák, L. Jakab, A. Barócsi, and P. Richter, "Improved design method for acousto-optic light deflectors," Opt. Commun. 172, 297-324 (1999). [CrossRef]
  10. S. Zeng, X. Lv, C. Zhan, W. R. Chen, W. Xiong, S. L. Jacques, and Q. Luo, "Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism," Opt. Lett. 31, 1091-1093 (2006). [CrossRef] [PubMed]
  11. R. Szipõcs, A. P. Kovács, and Z. Bor, "Dispersion measurement on crystals for ultrashort pulse generation with use of interference in the frequency domain," in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), p. 133.
  12. A. P. Kovács, K. Osvay, G. Kurdi, M. Görbe, J. Klebniczki, and Z. Bor, "Dispersion control of a pulse stretcher-compressor system with two-dimensional spectral interferometry," Appl. Phys. B. 80, 165-170 (2005). [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  14. R. E. Sherriff, "Analytic expressions for group-delay dispersion and cubic dispersion in arbitrary prism sequences," J. Opt. Soc. Am. B 15, 1224-1230 (1998). [CrossRef]
  15. W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber," Opt. Lett. 29, 1285-1287 (2004). [CrossRef] [PubMed]
  16. K. Kuba and S. Nakayama, "Two-photon laser scanning microscopy: test of objective lenses and Ca+ probes," Neurosci. Res. (NY) 32, 281-294 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited