OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 11 — Apr. 10, 2007
  • pp: 1963–1967

Photorefractive real-time phase-coded optical correlation storage using a crossed cylindrical-collimating lens system

Zhongxiang Zhou, Dewei Gong, Qingxin Meng, and Jianlong Zhang  »View Author Affiliations

Applied Optics, Vol. 46, Issue 11, pp. 1963-1967 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (610 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Phase-coded optical correlation storage in photorefractive crystals, using a crossed cylindrical-collimating lens system, has been realized. It possesses the advantages of both storage and correlator. It can perform real time and fast selection of the information correlated to the input information from a great amount of stored information. In Zn:Fe:LiNbO 3 ( 0 .03   wt.   %   Fe,  3   mol.   %   Zn ) , combining this rotational phase-coded multiplexing with angular multiplexing, 36 holograms have been successfully multiplexed and exactly identified in the same crystal volume. The cross talk and angular selectivity of such phase-coded multiplexing are discussed.

© 2007 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(160.5320) Materials : Photorefractive materials

ToC Category:
Diffraction and Gratings

Original Manuscript: June 28, 2006
Revised Manuscript: November 16, 2006
Manuscript Accepted: November 21, 2006
Published: March 20, 2007

Zhongxiang Zhou, Dewei Gong, Qingxin Meng, and Jianlong Zhang, "Photorefractive real-time phase-coded optical correlation storage using a crossed cylindrical-collimating lens system," Appl. Opt. 46, 1963-1967 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Van Heerden, "Theory of optical information storage in solids," Appl. Opt. 2, 393-400 (1963). [CrossRef]
  2. D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, "Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3," Appl. Phys. Lett. 26, 182-184 (1975). [CrossRef]
  3. F. H. Mok, "Angle-multiplexed storage of 5000 holograms in lithium niobate," Opt. Lett. 18, 915-917 (1993). [CrossRef] [PubMed]
  4. G. A. Rakuljic, V. Leyva, and A. Yariv, "Optical data storage using orthogonal wavelength multiplexed volume holograms," Opt. Lett. 17, 1471-1473 (1992). [CrossRef] [PubMed]
  5. S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and F. T. S. Yu, "Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser," Opt. Commun. 101, 317-321 (1993). [CrossRef]
  6. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, "Potentialities and limitations of hologram multiplexing using the phase-encoding technique," Appl. Opt. 31, 5700-5705 (1992). [CrossRef] [PubMed]
  7. C. Alves, G. Pauliat, and G. Roosen, "Dynamic phase-encoding storage of 64 images in a BaTiO3 photorefractive crystal," Opt. Lett. 19, 1894-1896 (1994). [CrossRef] [PubMed]
  8. C. C. Chang, K. L. Russell, and G. W. Hu, "Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal," Appl. Phys. B 72, 307-310 (2001).
  9. V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, "Electric field selectivity and multiplexing of volume holograms in LiNbO3," Appl. Phys. B 71, 43-46 (2000).
  10. C. Sun, R. Tsou, W. Chang, J. Chang, and M. Chang, "Random phase-coded multiplexing of hologram volumes using ground glass," Opt. Quantum Electron. 28, 1551-1561 (1996). [CrossRef]
  11. C. Denz, T. Dellwig, J. Lembcke, and T. Tschudi, "Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing," Opt. Lett. 21, 278-280 (1996). [CrossRef] [PubMed]
  12. J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Recall of linear combinations of stored data pages based on phase-code multiplexing in volume holography," Opt. Lett. 19, 1079-1981 (1994). [CrossRef] [PubMed]
  13. J. Y. Fu, Z. Zhou, and F. T. S. Yu, "Phase-coded multiplexing using a crossed cylindrical-collimating lens system for volume hologram storage in LiNbO3," in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications VIII, F. T. S. Yu and R. Guo, eds., Proc SPIE 4803, 185-189 (2002). [CrossRef]
  14. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  15. K. O. Müller, C. Denz, T. Rauch, T. Hermann, and T. Tschudi, "High capacity holographic data storage based on phase-coded multiplexing," Opt. Mem. Neural Netw. 7, 1-10 (1998).
  16. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J 48, 2909-2947 (1968).
  17. J. M. Heaton, P. A. Mills, E. Paige, L. Solymar, and T. Wilson, "Diffraction efficiency and angular selectivity of volume phase holograms recorded in photorefractive materials," Opt. Acta 31, 885-901 (1984). [CrossRef]
  18. S. Tao, "Spatioangularly multiplexed holographic storage in photorefractive crystals," Ph.D. dissertation (University of London, 1993).
  19. Y. Quan, T. Shiquan, J. Zhuqing, and Y. Xingchang, "The vertical angular selectivity and grating degeneracy of volume holographic gratings," Chin. J. Lasers 24, 337-341 (1997).
  20. E. C. Maniloff and K. M. Johnson, "Maximized photorefractive holographic storage," J. Appl. Phys. 70, 4702-4707 (1991). [CrossRef]
  21. Y. Taketom, J. E. Ford, J. Ma, Y. Fainman, and S. H. Lee, "Incremental recording for photorefractive hologram multiplexing," Opt. Lett. 16, 1774-1776 (1991). [CrossRef]
  22. A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2829 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited