OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 11 — Apr. 10, 2007
  • pp: 1994–2000

Conical optics: the solution to confine light

T. Grosjean, F. Baida, and D. Courjon  »View Author Affiliations

Applied Optics, Vol. 46, Issue 11, pp. 1994-2000 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (333 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare the performances in terms of confinement and depth of field of spherical and conical optics. It turns out that, if the spherical optics is adapted to the usual parallel imaging, conical optics seems to be the optimized solution for systems based on scanning (sequential imaging). It is shown that the optimized confinement capability of conical optics is due to the ability of conical components to generate a single Bessel beam with high efficiency. The calculations are based on Weyl formulas.

© 2007 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(070.6110) Fourier optics and signal processing : Spatial filtering
(110.0180) Imaging systems : Microscopy
(110.5220) Imaging systems : Photolithography
(210.4770) Optical data storage : Optical recording
(220.2560) Optical design and fabrication : Propagating methods

ToC Category:
Imaging Systems

Original Manuscript: August 30, 2006
Revised Manuscript: November 10, 2006
Manuscript Accepted: November 21, 2006
Published: March 20, 2007

T. Grosjean, F. Baida, and D. Courjon, "Conical optics: the solution to confine light," Appl. Opt. 46, 1994-2000 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Staniforth, J. Goldstein, D. E. Newbury, C. E. Lyman, P. Echlin, E. Lifshin, L. C. Sawyer, J. R. Michael, and D. C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis (Springer, 2002).
  2. T. Wilson, ed., Confocal Microscopy (Academic, 1990).
  3. J. Powell, CO2 Laser Cutting (Springer, 1998). [PubMed]
  4. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, "Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses," Appl. Opt. 21, 4360-4364 (2002). [CrossRef]
  5. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Opt. Lett. 24, 646-648 (1999). [CrossRef]
  6. H.-B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, "Arbitrary-lattice photonic crystals created by multiphoton microfabrication," Opt. Lett. 26, 325-327 (2001). [CrossRef]
  7. L. P. Ghislain and V. B. Elings, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999). [CrossRef]
  8. T. D. Milster, "Horizons for optical data storage," Opt. Photon. News 16(3), 28-33 (2005). [CrossRef]
  9. J. H. McLeod, "Axicons and their uses," J. Opt. Soc. Am. 50, 166-169 (1960). [CrossRef]
  10. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990). [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press, 1980, reprinted Cambridge U. Press, 1997).
  12. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959). [CrossRef]
  13. J. J. Stammes, Waves in Focal Regions (Adam Hilger, 1986).
  14. H. Weyl, "Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter," Ann. Phys. (Leipzig) 60, 481-500 (1919). [CrossRef]
  15. Z. Bouchal and M. Olivik, "Non-diffractive vector Bessel beams," J. Mod. Opt. 42, 1555-1566 (1995). [CrossRef]
  16. P. Vahimaa, V. Kettunen, M. Kuittinen, J. Turunen, and A. T. Friberg, "Electromagnetic analysis of nonparaxial Bessel beams generated by diffractive axicon," J. Opt. Soc. Am. A 14, 1817-1824 (1997). [CrossRef]
  17. T. Grosjean and D. Courjon, "Immaterial tip concept by light confinement," J. Microsc. (Oxford) 202, 273-278 (2001). [CrossRef] [PubMed]
  18. J. Durnin, "Exact solutions for nondiffracting beams. i. The scalar theory," J. Opt. Soc. Am. A 4, 651-654 (1987). [CrossRef]
  19. M. Zamboni-Rached, A. M. Shaarawi, and E. Recami, "Focused x-shaped pulses," J. Opt. Soc. Am. A 21, 1564-1574 (2004). [CrossRef]
  20. G. Toraldo di Francia, "Supergain antennas and optical resolving power," Nuovo Cimento , Suppl. 9, 426-435 (1952). [CrossRef]
  21. Z. S. Hegedus, "Annular pupil arrays. Application to confocal scanning," Opt. Acta 32, 815-826 (1985). [CrossRef]
  22. Z. S. Hegedus, "Superresolving filters in confocally scanned imaging systems," J. Opt. Soc. Am. A 3, 1892-1896 (1986). [CrossRef]
  23. M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, "Three-dimensional superresolution by annular binary filters," Opt. Commun. 165, 267-278 (1999). [CrossRef]
  24. M. A. A. Neil, R. Juskaitis, T. Wilson, and Z. J. Laczik, "Optimized pupil-plane filters for confocal microscope point-spread function engineering," Opt. Lett. 25, 245-247 (2000). [CrossRef]
  25. I. Leiserson, S. G. Lipson, and V. Sarafis, "Superresolution in far-field imaging," Opt. Lett. 25, 209-211 (2000). [CrossRef]
  26. C.-C. Sun and C.-K. Liu, "Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation," Opt. Lett. 28, 99-101 (2003). [CrossRef] [PubMed]
  27. M. Pluta, Advanced Light Microscopy Vol. I: Principles and Basic Properties (Elsevier, 1988).
  28. J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987). [CrossRef] [PubMed]
  29. F. Gori, G. Guattari, and C. Padovani, "Bessel-Gauss beams," Opt. Commun. 64, 491-495 (1987). [CrossRef]
  30. P. L. Overfelt and C. S. Kenney, "Comparison of the propagation characteristics of Bessel, Bessel-Gauss, and Gaussian beams diffracted by a circular aperture," J. Opt. Soc. Am. A 8, 732-745 (1991). [CrossRef]
  31. Z. Jiang, Q. Lu, and Z. Liu, "Propagation of apertured Bessel beams," Appl. Opt. 34, 7183-7185 (1996). [CrossRef]
  32. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  33. T. Grosjean and D. Courjon, "Polarization filtering induced by imaging systems: effect on image structure," Phys. Rev. E 67, 46611 (2003). [CrossRef]
  34. C. J. R. Sheppard and A. Choudhury, "Annular pupils, radial polarization, and superresolution," Appl. Opt. 43, 4322-4327 (2004). [CrossRef] [PubMed]
  35. A. Burvall, K. Kolacz, Z. Jaroszewicz, and A. T. Friberg, "Simple lens axicon," Appl. Opt. 43, 4838-4844 (2004). [CrossRef] [PubMed]
  36. C. J. R. Sheppard and A. Choudhury, "Image formation in the scanning microscope," Opt. Acta 24, 1051-1073 (1977). [CrossRef]
  37. C. J. R. Sheppard, "The use of lenses with annular aperture in scanning optical microscopy," Optik (Stuttgart) 48, 329-334 (1977).
  38. M. Gu, T. Tannous, and C. J. R. Sheppard, "Effect of an annular pupil on confocal imaging through highly scattering media," Opt. Lett. 21, 312-314 (1996). [CrossRef] [PubMed]
  39. S. Lindek, C. Cremer, and E. H. Stelzer, "Confocal theta fluorescence microscopy with annular apertures," Appl. Opt. 35, 126-130 (1996). [CrossRef] [PubMed]
  40. R. M. Herman and T. A. Wiggins, "Apodization of diffractionless beams," Appl. Opt. 31, 5913-5915 (1992). [CrossRef] [PubMed]
  41. G. Scott and N. McArdle, "Efficient generation of nearly diffraction-free beams using an axicon," Opt. Eng. 31, 2640-2643 (1992). [CrossRef]
  42. T. Grosjean, D. Courjon, and D. Van Labeke, "Bessel beams as virtual tips for near-field optics," J. Microsc. (Oxford) 210, 319-323 (2003). [CrossRef] [PubMed]
  43. T. Tanaka and S. Yamamoto, "Comparison of abberation between axicon and lens," Opt. Commun. 184, 113-118 (2000). [CrossRef]
  44. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, "Imaging properties of axicon in a scanning optical system," Appl. Opt. 31, 6653-6657 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited