OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 11 — Apr. 10, 2007
  • pp: 2123–2130

Near-infrared laser tomographic imaging with right-angled scattered coherent light using an optical heterodyne-detection-based confocal scanning system

Izumi Nishidate, Masaki Goto, Yoshiaki Sasaki, Tetsuya Yuasa, Balasigamani Devaraj, Kyuichi Niizeki, and Takao Akatsuka  »View Author Affiliations

Applied Optics, Vol. 46, Issue 11, pp. 2123-2130 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2871 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate, what is to the best of our knowledge, a novel optical tomographic method for the visualization of the inner structure of scattering media such as biological tissue in the near-infrared region. We constructed a scanning confocal imaging system with a cross-axes arrangement using optical fibers. This system is based on the optical heterodyne technique and enables the detection of very weak coherence photons that are generated in the spatially restricted confocal region and scattered laterally (90°) against an incident beam. To evaluate the fundamental imaging capabilities of the system, we assessed measurements from scattering phantoms composed of an Intralipid suspension with varying volume concentrations. The results of this study demonstrate that the right-angled scattered light adheres to the Lambert–Beer law and that the present system can detect light propagating through a distance of 31 l of the mean free path. An inclusion as small as 100   μm can be discriminated in a scattering media with an optical thickness of 4. We investigated the potential of the proposed system for imaging biological tissues in preliminary experiments using samples of chicken breast tissue.

© 2007 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(110.6960) Imaging systems : Tomography
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Imaging Systems

Original Manuscript: June 13, 2006
Revised Manuscript: October 23, 2006
Manuscript Accepted: November 11, 2006
Published: March 20, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Izumi Nishidate, Masaki Goto, Yoshiaki Sasaki, Tetsuya Yuasa, Balasigamani Devaraj, Kyuichi Niizeki, and Takao Akatsuka, "Near-infrared laser tomographic imaging with right-angled scattered coherent light using an optical heterodyne-detection-based confocal scanning system," Appl. Opt. 46, 2123-2130 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  2. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (2000). [CrossRef]
  3. J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004). [CrossRef] [PubMed]
  4. T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005). [CrossRef] [PubMed]
  5. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, "Simultaneous reconstruction of optical absorption and scattering maps in turbid media from near-infrared frequency-domain data," Opt. Lett. 20, 2128-2130 (1995). [CrossRef] [PubMed]
  6. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, "Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject," Appl. Opt. 36, 10-20 (1997). [CrossRef] [PubMed]
  7. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998). [CrossRef]
  8. T. J. Farell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992). [CrossRef]
  9. Y. Yamashita, A. Maki, and H. Koizumi, "Near-infrared topographic measurement system: imaging absorbers localized in a scattering medium," Rev. Sci. Instrum. 67, 730-732 (1996). [CrossRef]
  10. S. B. Colak, D. G. Papaioannou, G. W. t'Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten, "Tomographic image reconstruction from optical projections in light-diffusing media," Appl. Opt. 36, 180-213 (1997). [CrossRef] [PubMed]
  11. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160-ms temporal resolution," Opt. Express 6, 49-57 (2000). [CrossRef] [PubMed]
  12. C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D 36, R207-R227 (2003). [CrossRef]
  13. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  14. M. E. Brezinski and J. G. Fujimoto, "Optical coherence tomography: high-resolution imaging in nontransparent tissue," IEEE J. Sel. Top. Quantum Electron. 5, 1185-11192 (1999). [CrossRef]
  15. J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  16. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).
  17. A. Schmidt, R. Corey, and P. Saulnier, "Imaging through random media by use of low-coherence optical heterodyning," Opt. Lett. 20, 404-406 (1995). [CrossRef] [PubMed]
  18. B. Devaraj, M. Usa, K. P. Chan, T. Akatsuka, and H. Inaba, "Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissue in vivo and in vitro," IEEE J. Sel. Top. Quantum Electron. 2, 1008-1016 (1996). [CrossRef]
  19. B. Devaraj, M. Takeda, M. Kobayashi, M. Usa, K. P. Chan, Y. Watanabe, T. Yuasa, T. Akatsuka, M. Yamada, and H, Inaba, "In vivo laser computed tomographic imaging of human fingers by coherent detection imaging method using different wavelengths in near infrared region," Appl. Phys. Lett. 69, 3671-3673 (1996). [CrossRef]
  20. Y. Sasaki, S. Tanosaki, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "Fundamental imaging properties of transillumination laser CT using optical fiber applicable to bio-medical sensing," IEEE Sens. J. 3, 658-667 (2003). [CrossRef]
  21. S. Tanosaki, Y. Sasaki, M. Takagi, A. Ishikawa, H. Inage, R. Emori, J. Suzuki, T. Yuasa, H. Taniguchi, B. Devaraj, and T. Akatsuka, "In vivo laser tomographic imaging of mouse leg by coherent detection imaging method," Opt. Rev. 10, 447-451 (2003). [CrossRef]
  22. A. Yariv, Introduction to Optical Electronics, 3rd ed. (Holt, Rinehart and Winston, 1985).
  23. J. J. Snyder, "Wide dynamic range optical power measurement using coherent heterodyne radiometry," Appl. Opt. 27, 4465-4469 (1998). [CrossRef]
  24. A. E. Siegman, "The antenna properties of optical heterodyne receives," Appl. Opt. 5, 1558-1594 (1996).
  25. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).
  26. E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004). [CrossRef] [PubMed]
  27. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991). [CrossRef] [PubMed]
  28. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).
  29. K. Fukuchi, B. Devaraj, M. Usa, M. Kobayashi, K. P. Chan, and H. Inaba, "High sensitivity spectroscopic measurements of optical transmission characteristics of a biological tissue phantom 'Intralipid-10%' using optical heterodyne detection method," Jpn. J. Opt. 27, 40-47 (1998).
  30. K. K. Bizheva, A. M. Siegel, and D. A. Boas, "Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy," Phys. Rev. E 58, 7664-7667 (1998). [CrossRef]
  31. L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941). [CrossRef]
  32. S. L. Jacques and D. J. McAuliffe, "The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation," Photochem. Photobiol. 53, 769-775 (1991). [PubMed]
  33. G. Marquez, L. V. Wang, S.-P. Lin, J. A. Schwartz, and S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," Appl. Opt. 37, 798-804 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited