OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 12 — Apr. 20, 2007
  • pp: 2153–2165

Adaptive beam shaping by controlled thermal lensing in optical elements

Muzammil A. Arain, Volker Quetschke, Joseph Gleason, Luke F. Williams, Malik Rakhmanov, Jinho Lee, Rachel J. Cruz, Guido Mueller, D. B. Tanner, and David. H. Reitze  »View Author Affiliations


Applied Optics, Vol. 46, Issue 12, pp. 2153-2165 (2007)
http://dx.doi.org/10.1364/AO.46.002153


View Full Text Article

Enhanced HTML    Acrobat PDF (3640 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO 2 laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0   m , with a slope of 0.082 diopter∕W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics

ToC Category:
Adaptive Optics

History
Original Manuscript: August 23, 2006
Manuscript Accepted: November 24, 2006
Published: April 3, 2007

Citation
Muzammil A. Arain, Volker Quetschke, Joseph Gleason, Luke F. Williams, Malik Rakhmanov, Jinho Lee, Rachel J. Cruz, Guido Mueller, D. B. Tanner, and David. H. Reitze, "Adaptive beam shaping by controlled thermal lensing in optical elements," Appl. Opt. 46, 2153-2165 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-12-2153


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. Reitze, "Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wavefront sensor," Appl. Opt. 40, 366-368 (2001). [CrossRef]
  2. R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, and D. Shoemaker, "Adaptive thermal compensation of test masses in advanced LIGO," Class. Quantum Grav. 19, 1803-1812 (2002). [CrossRef]
  3. J. Degallaix, C. Zhao, L. Ju, and D. Blair, "Thermal lensing compensation for AIGO high optical power test facility," Class. Quantum Grav. 21, S903-S908 (2004). [CrossRef]
  4. V. Quetschke, J. Gleason, M. Rakhmanov, J. Lee, L. Zhang, K. Yoshiki Franzen, C. Leidel, G. Mueller, R. Amin, D. B. Tanner, and D. H. Reitze, "Adaptive control of laser modal properties," Opt. Lett. 31, 217-219 (2006). [CrossRef] [PubMed]
  5. P. Hello and J. Vinet, "Analytical models of thermal aberrations in massive mirrors heated by high power laser beams," J. Phys. (France) 51, 1267-1282 (1990). [CrossRef]
  6. P. Hello and J. Vinet, "Analytical models of transient thermoelastic deformations of mirrors heated by high power CW laser beams," J. Phys. (France) 51, 2243-2261 (1990). [CrossRef]
  7. J. D. Foster and L. M. Osterink, "Thermal effects in Nd:YAG laser," Appl. Opt. 41, 3656-3663 (1970).
  8. C. E. Greninger, "Thermally induced wavefront distortions in laser windows," Appl. Opt. 41, 549-552 (1986).
  9. K. A. Strain, K. Danzmann, J. Mizuno, P. G. Nelson, A. Rüdiger, R. Schilling, and W. Winkler, "Thermal lensing in recycling interferometric gravitational wave detectors," Phys. Lett. A 194, 124-132 (1994). [CrossRef]
  10. W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, "Heating by optical absorption and the performance of interferometric gravitational-wave detectors," Phys. Rev. A 44, 7022-7036 (1991). [CrossRef] [PubMed]
  11. R. G. Beausoleil, E. K. Gustafson, M. M. Fejer, E. D'Ambrosio, W. Kells, and J. Camp, "Model of thermal wave-front distortion in interferometric gravitational-wave detectors. I. Thermal focusing," J. Opt. Soc. Am. B 20, 1247-1268 (2003). [CrossRef]
  12. A. Weinstein, "Advanced LIGO optical configuration and prototyping effort," Class. Quantum Grav. 19, 1575-1584 (2002). [CrossRef]
  13. R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, "Active correction of thermal lensing through external radiative thermal actuation," Opt. Lett. 29, 2635-2637 (2004). [CrossRef] [PubMed]
  14. E. Khazanov, N. F. Andreev, A. Mal'shakov, O. Palashov, A. K. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. A. Ivanov, R. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, "Compensation of thermally induced modal distortions in Faraday isolators," IEEE J. Quantum Electron. 40, 1500-1510 (2004). [CrossRef]
  15. F. J. Low, "Low-temperature geranium bolometer," J. Opt. Soc. Am. 51, 1300-1304 (1961). [CrossRef]
  16. Beam Scan, Model XYFIR, Photon Inc., http://www.photon-inc.com.
  17. D. Z. Anderson, "Alignment of resonant optical cavities," Appl. Opt. 23, 2944-2949 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited