OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 12 — Apr. 20, 2007
  • pp: 2166–2179

Double-cavity radiometer for high-flux density solar radiation measurements

A. Parretta, A. Antonini, M. Armani, G. Nenna, G. Flaminio, and M. Pellegrino  »View Author Affiliations


Applied Optics, Vol. 46, Issue 12, pp. 2166-2179 (2007)
http://dx.doi.org/10.1364/AO.46.002166


View Full Text Article

Enhanced HTML    Acrobat PDF (2546 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A radiometric method has been developed, suitable for both total power and flux density profile measurement of concentrated solar radiation. The high-flux density radiation is collected by a first optical cavity, integrated, and driven to a second optical cavity, where, attenuated, it is measured by a conventional radiometer operating under a stationary irradiation regime. The attenuation factor is regulated by properly selecting the aperture areas in the two cavities. The radiometer has been calibrated by a pulsed solar simulator at concentration levels of hundreds of suns. An optical model and a ray-tracing study have also been developed and validated, by which the potentialities of the radiometer have been largely explored.

© 2007 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(120.3150) Instrumentation, measurement, and metrology : Integrating spheres
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(350.6050) Other areas of optics : Solar energy

ToC Category:
Detectors

History
Original Manuscript: September 20, 2006
Manuscript Accepted: October 25, 2006
Published: April 3, 2007

Citation
A. Parretta, A. Antonini, M. Armani, G. Nenna, G. Flaminio, and M. Pellegrino, "Double-cavity radiometer for high-flux density solar radiation measurements," Appl. Opt. 46, 2166-2179 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-12-2166


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Swanson, "The promise of concentrators," Prog. Photovoltaics 8, 93-111 (2000). [CrossRef]
  2. C. E. Tyner, G. J. Kolb, M. Geyer, and M. Romero, "Concentrating solar power in 2001--an IEA/SolarPACES summary of present status and future prospects" (SolarPACES, 2001), www.solarpaces.org.
  3. M. Brogren, "Optical efficiency of low-concentrating solar energy systems with parabolic reflectors," in Comprehensive Summaries of Uppsala Dissertations from the Faculty of Sciences and Technology 934 (Acta Universitatis Upsaliensis, Uppsala, 2004). [PubMed]
  4. J. S. Coventry, "Performance of a concentrating photovoltaic/thermal solar collector," Sol. Energy 78, 211-222 (2005). [CrossRef]
  5. M. Adsten, A. Helgesson, and B. Karlsson, "Evaluation of CPC-collector designs for stand-alone, roof- or wall installation," Sol. Energy 79, 638-647 (2005). [CrossRef]
  6. L. H. Slooff, R. Kinderman, A. R. Burgers, J. A. M. van Roosmalen, A. Büchtemann, R. Danz, M. Schleusener, A. J. Chatten, D. Farrell, and K. W. J. Barnham, "The luminescent concentrator: a bright idea for spectrum conversion?" in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain, 6-10 June 2005.
  7. Yu. Vorobiev, J. González-Hernández, P. Vorobiev, and L. Bulat, "Thermal-photovoltaic solar hybrid system for efficient solar energy conversion," Sol. Energy 80, 170-176 (2006). [CrossRef]
  8. A. Steinfeld, "Solar thermochemical production of hydrogen--a review," Sol. Energy 78, 603-615 (2005). [CrossRef]
  9. C. Agrafiotis, M. Roeb, A. G. Konstandopoulos, L. Nalbandian, V. T. Zaspalis, C. Sattler, P. Stabbe, and A. M. Steele, "Solar water splitting for hydrogen production with monolithic production," Sol. Energy 79, 409-421 (2005). [CrossRef]
  10. T. Osinga, U. Frommherz, A. Steinfeld, and C. Wieckert, "Experimental investigation of the solar carbothermic reduction of ZnO using a two-cavity solar reactor," ASME J. Sol. Energy Eng. 126, 633-637 (2004). [CrossRef]
  11. R. Adinberg, M. Epstein, and J. Karni, "Solar gasification of biomass: a molten salt pyrolysis study," ASME J. Sol. Energy Eng. 126, 850-857 (2004). [CrossRef]
  12. R. Rubin, J. Karni, and J. Yeheskel, "Chemical kinetics simulation of high temperature hydrocarbons reforming in a solar reactor," ASME J. Sol. Energy Eng. 126, 858-866 (2004). [CrossRef]
  13. A. Yogev, A. Kribus, M. Epstein, and A. Kogan, "Solar tower reflector systems: a new approach for high-temperature solar plants," Int. J. Hydrogen Energy 23, 239-245 (1998). [CrossRef]
  14. A. Lewandowski, "Deposition of diamond-like carbon films and other materials processes using a solar furnace," Mat. Tech. 8, 237-240 (1993).
  15. I. García, J. Sánchez Olías, J. J. De Damborenea, and A. J. Vázquez, "Sintesis de nitruro de titanio mediante láser y energia solar concentrada," Rev. Metal. Madrid 34, 109-113 (1998).
  16. A. Ferriere, C. Faillat, S. Galasso, R. Barallier, and J. E. Masse, "Surface hardening of steel using highly concentrated solar energy process," ASME J. Sol. Energy Eng. 21, 36-39 (1999). [CrossRef]
  17. P. Douale, S. Serror, R. M. Pradeilles Duval, J. J. Serra, and E. Felder, "Thermal shocks on an electrolytic chromium coating in a solar furnace," J. Phys. IV 9, 429-434 (1999). [CrossRef]
  18. I. García, J. Sánchez Olías, and A. J. Vázquez, "A new method for materials synthesis: solar energy concentrated by Fresnel lens," J. Phys. IV 9, 435-440 (1999). [CrossRef]
  19. E. T. Franklin and J. S. Coventry, "Effects of highly non-uniform illumination distribution on electrical performance of solar cells," in Proceedings of the 40th Annual Conference for the Australian New Zealand Solar Energy Society (ANZSES, 2002).
  20. T. J. Wendelin, G. J. Jorgensen, and R. L. Wood, "SHOT: a method for characterizing the surface figure and optical performance of point focus solar concentrators," in Proceedings of the ASME-JSES-JSME International Solar Energy Conference (American Society of Mechanical Engineers, 1991), pp. 555-560.
  21. J. Grossman, "Development of a 2f optical performance measurement system," in Proceedings of the ASME International Solar Engineering Conference (ASME, 1994), pp. 25-32.
  22. M. Shortis and G. Johnston, "Photogrammetry: an available surface characterization tool for solar concentrators, Part I: Measurements of Surfaces," ASME J. Sol. Energy Eng. 118, 146-150 (1996). [CrossRef]
  23. M. Shortis and G. Johnston, "Photogrammetry: an available surface characterization tool for solar concentrators, Part II: Assessments of surfaces," ASME J. Sol. Energy Eng. 119, 286-291 (1997). [CrossRef]
  24. F. Arqueros, A. Jiménez, and A. Valverde, "A novel procedure for the optical characterization of solar concentrators," Sol. Energy 75, 135-142 (2003). [CrossRef]
  25. A. Luque, G. Sala, J. C. Arboiro, T. Bruton, D. Cunningham, and N. Mason, "Some results of the EUCLIDES photovoltaic concentrator prototype," Prog. Photovoltaics 5, 195-212 (1997). [CrossRef]
  26. I. Antón, G. Sala, and J. C. Arboiro, "Effect of the optical performance on the output power of the EUCLIDES array," in Proceedings of the 16th European Photovoltaic Solar Energy Conference (James & James Science Publishers, 2000), Vol. 3, pp. 2225-2228.
  27. G. Sala, I. Antón, J. C. Arboiro, A. Luque, E. Camblor, E. Mera, M. P. Gasson, M. Cendagorta, P. Valera, M. P. Friend, J. Monedero, S. González, and F. Dobón, "The 480 kWp EUCLIDES THERMIE power plant: installation, set-up and first results," in Proceedings of the 16th European Photovoltaic Solar Energy Conference (James & James Science Publishers, 2000), Vol. 3, pp. 2072-2077.
  28. G. Sala, I. Antón, J. Monedero, P. Valera, M. P. Friend, M. Cendagorta, F. Pérez, E. Mera, and E. Camblor, "The Euclides-Thermie concentrator power plant in continuous operation," in Proceedings of the 17th European Photovoltaic Solar Energy Conference (ETA, 2001), Vol. 1, pp. 488-491.
  29. I. Antón, D. Pachón, and G. Sala, "Characterization of optical collectors for concentration photovoltaic applications," Prog. Photovoltaics 11, 387-405 (2003). [CrossRef]
  30. S. Biryukov, "Determining the optical properties of PETAL, the 400 m2 parabolic dish at Sede Boqer," ASME J. Sol. Energy Eng. 126, 827-832 (2004). [CrossRef]
  31. A. Parretta, C. Privato, G. Nenna, A. Antonini, and M. Stefancich, "Monitoring of concentrated radiation beam for photovoltaic and thermal solar energy conversion applications," Appl. Opt. 45, 7885-7897 (2006). [CrossRef] [PubMed]
  32. A. Parretta, "Characterization of concentrated light beams with applications to solar concentrators. Part A: Light scattering methods," presented at the First International School on Concentrated Photovoltaics, Ferrara, Italy, 2-6 September 2006.
  33. A. Ferriere and B. Rivoire, "Measurement of concentrated solar radiation: The asterix calorimeter," in Proceedings of the 10th SolarPACES International Symposium on Solar Thermal Concentrating Technologies, Sydney, H. Kreetz, ed. (Australian National University, 2000), pp. 233-240.
  34. A. Parretta, C. Privato, A. Maccari, and G. Nenna, "Integrating sphere apparatus for attenuating radiation," World patent WO 2006/082474 A1 (22 December 2005).
  35. A. Parretta, M. Pellegrino, G. Flaminio, S. Bolognesi, and G. Nenna, "Radiometer for concentrated solar radiation," in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition, CCIB (WIP-Renewable Energies, 2005), pp. 216-219.
  36. A. Parretta, M. Pellegrino, A. Antonini, M. Armani, "Characterization of concentrated light beams with applications to solar concentrators. Part B: Radiometric methods," presented at the First International School on Concentrated Photovoltaics, Ferrara, Italy, 2-6 September 2006.
  37. A. Ferriere, J.-F. Robert, J. Kaluza, and A. Neumann, "Concentrated solar flux measurements: results of the second SolarPACES fluxmeter intercomparison campaign," in Proceedings of the 10th SolarPACES International Symposium on Solar Thermal Concentrating Technologies, Sydney, H. Kreetz, ed. (Australian National University, 2000), pp. 247-254.
  38. A. Ferriere and B. Rivoire, "An instrument for measuring concentrated solar radiation: a photo-sensor interfaced with an integrating sphere," Sol. Energy 72, 187-193 (2002). [CrossRef]
  39. Labsphere, "A guide to reflectance coatings and materials," www.labsphere.com.
  40. Labsphere, "A guide to Integrating Sphere Theory and Applications," www.labsphere.com.
  41. A. Parretta is preparing a paper to be called "Spectral effects in integrating spheres."
  42. L. Addonizio, L. Gentilin, A. Mitiga, A. Parretta, M. Pellegrino, A. Romano, and M. Tucci, Caratterizzazione e Calibrazione di Celle Fotovoltaiche a Concentrazione, Internal Technical Report ENEA N. RT/2003/52/ENE (ENEA, 2003).
  43. A. Sarno, F. Apicella, L. Dirozzi, M. Pellegrino, C. Privato, and F. Roca, "The status of the PhoCUS project: Preliminary results," presented at the International Solar Concentrator Conference (SC2) for the Generation of Electricity or Hydrogen, Alice Springs, Australia, 10-14 November 2003.
  44. M. Avitabile, C. Cancro, G. Contento, R. Fucci, F. Roca, C. Privato, A. Sarno, F. Ferrazza, M. Zarcone, and M. Checcherini, "The first prototype of the PhoCUS project: design and preliminary performance analysis," presented at the 19th European Photovoltaic Solar Energy Conference, Paris, 7-11 June 2004.
  45. Lambda Research, http://www.lambdares.com/products/tracepro/index.phtml.
  46. ECOVIDE, http://www.ecovide.com.
  47. R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier-Academic, 2005).
  48. A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, "Angle-dependent reflectance and transmittance measurements on photovoltaic materials and solar cells," Optics Commun. 172, 139-15 (1999). [CrossRef]
  49. D. R. Lide, ed., Handbook of Chemistry and Physics, 80th ed. (CRC, 1999), pp. 12-132.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited