OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 12 — Apr. 20, 2007
  • pp: 2269–2279

Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide

Masahisa Nakazato, Tomohiro Nagai, Tetsu Sakai, and Yasuo Hirose  »View Author Affiliations


Applied Optics, Vol. 46, Issue 12, pp. 2269-2279 (2007)
http://dx.doi.org/10.1364/AO.46.002269


View Full Text Article

Enhanced HTML    Acrobat PDF (2019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A UV ozone differential-absorption lidar (DIAL) utilizing a Nd:YAG laser and a single Raman cell filled with carbon dioxide ( CO 2 ) is designed, developed, and evaluated. The generated wavelengths are 276, 287, and 299   nm , comprising the first to third Stokes lines of the stimulated Raman scattering technique. The correction terms originated from the aerosol extinction, the backscatter, and the absorption by other gases are estimated using a model atmosphere. The experimental results demonstrate that the emitted output energies were 13 mJ∕pulse at 276   nm and 287   nm and 5   mJ / pulse at 299   nm , with pump energy of 91 mJ∕pulse and a CO 2 pressure of 0.7 MPa. The three Stokes lines account for 44.0% of the available energy. The use of argon or helium as a buffer gas in the Raman cell was also investigated, but this leads to a dramatic decrease in the third Stokes line, which makes this wavelength practically unusable. Our observations confirmed that 30 min of integration were sufficient to observe ozone concentration profiles up to 10   km . Aerosol extinction and backscatter correction are estimated and applied. The aerosol backscatter correction profile using 287 and 299   nm as reference wavelengths is compared with that using 355   nm . The estimated statistical error is less than 5% at 1 .5   km and 10% at 2 .6   km . Comparisons with the operational carbon–iodine type chemical ozonesondes demonstrate 20% overestimation of the ozone profiles by the DIAL technique.

© 2007 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4950) Atmospheric and oceanic optics : Ozone

ToC Category:
Atmospheric and ocean optics

History
Original Manuscript: May 10, 2006
Revised Manuscript: December 6, 2006
Manuscript Accepted: December 6, 2006
Published: April 3, 2007

Citation
Masahisa Nakazato, Tomohiro Nagai, Tetsu Sakai, and Yasuo Hirose, "Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide," Appl. Opt. 46, 2269-2279 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-12-2269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Ancellet, J. Pelon, M. Beekmann, A. Papayannis, and G. Mégie, "Ground-based lidar studies of ozone exchanges between the stratosphere and the troposphere," J. Geophys. Res. 96, 22401-22421 (1991). [CrossRef]
  2. A. O. Langford and S. J. Reid, "Dissipation and mixing of a small-scale stratospheric intrusion in the upper troposphere," J. Geophys. Res. 103, 31265-31276 (1998). [CrossRef]
  3. H. Eisele, H. E. Scheel, R. Sladovic, and T. Trickl, "High-resolution lidar measurements of stratosphere-troposphere exchange," J. Atmos. Sci. 56, 319-330 (1999). [CrossRef]
  4. E. Browell, E. Danielsen, S. Ismail, G. L. Gregory, and S. M. Beck, "Tropopose fold structure determined from airborne lidar and in situ measurements," J. Geophys. Res. 92, 2112-2120 (1987). [CrossRef]
  5. R. M. Banta, C. J. Senff, A. B. White, M. Trainer, R. T. McNider, R. J. Valente, S. D. Mayor, R. J. Alvarez, R. M. Hardesty, D. Parrish, and F. C. Fehsenfeld, "Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode," J. Geophys. Res. 103, 22519-22544 (1998). [CrossRef]
  6. M. Schroter, A. Obermeier, D. Bruggemann, and O. Klemm, "Application of ground-based lidar for studies of the dynamics of ozone in a mountainous basin," Envir. Sci. Pollut. Res. 9, 381-384 (2002). [CrossRef]
  7. G. Ancellet, A. Papayannis, J. Pelon, and G. Mégie, "DIAL tropospheric ozone measurement using a Nd:YAG laser and the Raman shifting technique," J. Atmos. Ocean. Technol. 6, 832-839 (1989). [CrossRef]
  8. A. Papayannis, G. Ancellet, J. Pelon, and G. Mégie, "Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere," Appl. Opt. 29, 467-476 (1990). [CrossRef] [PubMed]
  9. J. A. Sunesson, A. Apiuley, and D. P. J. Swart, "Differential absorption lidar system for routine monitoring of tropospheric ozone," Appl. Opt. 33, 7045-7058 (1994). [CrossRef] [PubMed]
  10. M. H. Proffitt and A. O. Langford, "Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere," Appl. Opt. 36, 2568-2585 (1997). [CrossRef] [PubMed]
  11. O. Uchino, M. Tokunaga, M. Maeda, and Y. Miyazoe, "Differential-absorption-lidar measurement of tropospheric ozone with excimer-Raman hybrid laser," Opt. Lett. 8, 347-349 (1983). [CrossRef] [PubMed]
  12. W. B. Grant, E. V. Browell, N. S. Higdon, and S. Ismail, "Raman shifting of KrF laser radiation for tropospheric ozone measurements," Appl. Opt. 30, 2628-2633 (1991). [CrossRef] [PubMed]
  13. M. Uchiumi, T. Shibata, and M. Maeda, "Measurement of changes in lower tropospheric ozone distribution through one day using a compact UV solar-blind lidar," J. Meteorol. Soc. Jpn. 69, 513-521 (1991).
  14. U. Kempfer, W. Carnuth, R. Lotz, and T. Trickl, "A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application," Rev. Sci. Instrum. 65, 3145-3164 (1994). [CrossRef]
  15. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Uneus, and W. Wendt, "Mobile remote sensing system for atmospheric monitoring," Appl. Opt. 26, 4330-4338 (1987). [CrossRef] [PubMed]
  16. L. Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, and H. van den Bergh, "Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers," Appl. Opt. 36, 5026-5043 (1998). [CrossRef]
  17. S. E. Bisson, "Parametric study of an excimer-pumped nitrogen Raman shifter for lidar applications," Appl. Opt. 34, 3406-3412 (1995). [CrossRef] [PubMed]
  18. P. J. Collier, S. Unni, S. J. Verghese, A. Willitsford, C. R. Philbrick, R. D. Clark, and B. Doddridge, "Raman lidar measurements of tropospheric ozone," in Proceedings of the 5th Conference on Atmospheric Chemistry:Gases, Aerosols, and Clouds (American Meteorological Society, 2003), paper 6.3.
  19. V. Simeonov, V. Mitev, H. van den Bergh, and B. Calpini, "Raman frequency shifting in a CH4:H2:Ar mixture pumped by the fourth harmonic of a Nd:YAG laser," Appl. Opt. 37, 7112-7115 (1998). [CrossRef]
  20. V. Simeonov, B. Lazzarotto, P. Quaglia, H. van den Bergh, and B. Calpini, "Three-wavelength UV ozone DIAL based on a Raman cell filled with two Raman active gases," The 20th International Laser Radar Conference (Vichy, 2000).
  21. S. Tzortzakis, G. Tsaknakis, A. Papayannis, and A. A. Serafetinides, "Investigation of the spatial profile of stimulated Raman scattering beams in D2 and H2 gases using a pulsed Nd:YAG laser at 266 nm," Appl. Phys. B 79, 71-75 (2004). [CrossRef]
  22. G. Ancellet and F. Ravetta, "Compact airborne lidar for tropospheric ozone: description and field measurements," Appl. Opt. 37, 5509-5521 (1998). [CrossRef]
  23. V. Simeonov, B. Calpini, and H. van den Bergh, "New Raman-shifted sources for ozone DIAL applications," in Lidar Remote Sensing in Atmospheric and Earth Sciences, Proceedings of the ILRC21, L.Bissonnette, G.Roy, and G.Vallee, eds. (Defence R&D Canada, 2002), pp. 19-22.
  24. V. Simeonov, B. Calpini, J. Balin, P. Ristori, R. Jimenez, and H. van den Bergh, "UV ozone DIAL based on a N2 Raman converter: Design and results during ESCOMPTE field campaign," in Lidar Remote Sensing in Atmospheric and Earth Sciences, Proceedings of the ILRC21, L. Bissonnette, G. Roy, and G. Vallee, eds. (Defence R&D Canada, 2002), pp. 403-406.
  25. V. A. Kovalev and W. E. Eichinger, Elastic Lidar (Wiley, 2004), pp. 333-337.
  26. E. V. Browell, S. Ismail, and S. T. Shipley, "Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols," Appl. Opt. 24, 2827-2836 (1985). [CrossRef] [PubMed]
  27. G. Ancellet and J. Bosenberg, "Chapter 2 methodology," in Instrument Development for Atmospheric Research and Monitoring, J. Bosenberg, D. Brassington, and P. C. Simon, eds. (Springer, 1997), p. 19.
  28. M. E. Mack, R. L. Carman, J. Reintjes, and N. Bloembergen, "Transient stimulated rotational and vibrational Raman scattering in gases," Appl. Phys. Lett. 16, 209-211 (1970). [CrossRef]
  29. G. Eckhardt, "Selection of Raman laser materials," IEEE J. Quantum Electron. QE-2, 1-8 (1966). [CrossRef]
  30. L. T. Molina and M. J. Molina, "Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range," J. Geophys. Res. 91, 14501-14508 (1986). [CrossRef]
  31. U.S. Standard Atmosphere (U.S. GPO, 1976).
  32. G. Mégie and R. T. Menzies, "Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species," Appl. Opt. 19, 1173-1183 (1980). [CrossRef] [PubMed]
  33. L. Fiorani and E. Durieux, "Comparison among error calculations in differential absorption lidar measurements," Opt. Laser Technol. 33, 371-377 (2001). [CrossRef]
  34. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, "Optical properties of the atmosphere (3rd ed.)," Air Force Systems Command, United States Air Force, AFCRL-72-0497 (1972).
  35. Japan Meteorological Agency, "Time series of aerosol optical thickness in Japan," Annual Report on Atmospheric and Marine Environment Monitoring, No. 6 (2006) (in Japanese with English captions), http://www.data.kishou.go.jp/obs-env/cdrom/report2004/4turb.htm#44.
  36. A. Luches, V. Nassisi, and M. R. Perrone, "Stimulated Raman scattering in H2-Ar mixtures," Opt. Lett. 12, 33-35 (1987). [CrossRef] [PubMed]
  37. D. Diebel, M. Bristow, and R. Zimmermann, "Stokes shifted laser lines in KrF-pumped hydrogen: reduction of beam divergence by addition of helium," Appl. Opt. 30, 626-628 (1991). [CrossRef] [PubMed]
  38. T. Fujimoto and O. Uchino, "Estimation of the error caused by smoothing on DIAL measurements of stratospheric ozone," J. Meteorol. Soc. Jpn. 72, 605-611 (1994).
  39. S. Godin, A. I. Carswell, D. P. Donovan, H. Claude, W. Steinbrecht, I. S. McDermid, T. J. McGee, M. R. Gross, H. Nakane, D. P. J. Swart, H. B. Bergwerff, O. Uchino, P. von der Gathen, and R. Neuber, "Ozone differential absorption lidar algorithm intercomparison," Appl. Opt. 38, 6225-6236 (1999). [CrossRef]
  40. F. G. Fernald, "Analysis of atmospheric lidar observations: some comments," Appl. Opt. 23, 652-653 (1984). [CrossRef] [PubMed]
  41. O. Uchino and I. Tabata, "Mobile lidar for simultaneous measurements of ozone, aerosols, and temperature in the stratosphere," Appl. Opt. 30, 2005-2012 (1991). [CrossRef] [PubMed]
  42. T. Sasaki, Japan Meteorological Agency, 1-3-4 Ohtemachi, Chiyoda-ku, Tokyo 100-8122, Japan (personal communication, 2006).
  43. T. Shibata, M. Maeda, A. Utsunomiya, and T. Mizoguchi, "Simultaneous measurements of ozone by UV lidar and chemical ozonesonde," J. Meteorol. Soc. Jpn. 65, 999-1003 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited