OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 13 — May. 1, 2007
  • pp: 2434–2442

Analysis of hexagonal array geometry for free-space optical interconnects with improved signal-to-noise ratio

Feng-Chuan F. Tsai, Christopher J. O'Brien, Novak S. Petrović, and Aleksandar D. Rakić  »View Author Affiliations


Applied Optics, Vol. 46, Issue 13, pp. 2434-2442 (2007)
http://dx.doi.org/10.1364/AO.46.002434


View Full Text Article

Enhanced HTML    Acrobat PDF (1704 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of transmitter and receiver array configurations on the performance of free-space optical interconnects (FSOIs) was investigated. Experimentally measured, spectrally resolved, near-field images of vertical-cavity surface-emitting laser (VCSEL) transverse modes were used as extended sources in our simulation model and combined with laser relative intensity noise and the receiver noise to determine the optimal array geometry. Our results demonstrate the importance of stray-light cross talk in both square and hexagonal configurations. By changing the array lattice geometry from square to hexagonal, we obtained an overall optical signal-to-noise ratio improvement of 3   dB . We demonstrated that the optical signal-to-noise ratio is optimal for the hexagonal channel arrangement regardless of the transverse mode structure of the VCSEL beam. We also determined the VCSEL drive current required for the best performance of the FSOI system.

© 2007 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects

ToC Category:
Optical Computing

History
Original Manuscript: September 5, 2006
Revised Manuscript: December 21, 2006
Manuscript Accepted: December 22, 2006
Published: April 9, 2007

Citation
Feng-Chuan F. Tsai, Christopher J. O'Brien, Novak S. Petrović, and Aleksandar D. Rakić, "Analysis of hexagonal array geometry for free-space optical interconnects with improved signal-to-noise ratio," Appl. Opt. 46, 2434-2442 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-13-2434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, "Invited paper: Physical reasons for optical interconnection," Int. J. Optoelectron. 11, 155-168 (1997).
  2. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, 728-749 (2000). [CrossRef]
  3. D. V. Plant and A. G. Kirk, "Optical interconnects at the chip and board level: challenges and solutions," Proc. IEEE 88, 806-818 (2000). [CrossRef]
  4. D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, and S. Sinzinger, "Optical interconnects for neural and reconfigurable VLSI architecture," Proc. IEEE 88, 838-847 (2000). [CrossRef]
  5. N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, "Reconfigurable optical interconnections for parallel computing," Proc. IEEE 88, 829-837 (2000). [CrossRef]
  6. K. M. Geib, K. D. Choquette, D. K. Serkland, A. A. Allerman, and T. W. Hargett, "Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonants cavity photodetectors," IEEE J. Sel. Top. Quantum Electron. 8, 943-947 (2002). [CrossRef]
  7. R. H. Havemann and J. A. Hutchby, "High-performance interconnects: An integration overview," Proc. IEEE 89, 586-601 (2001). [CrossRef]
  8. M. Châteauneuf, A. G. Kirk, D. V. Plant, T. Yamamoto, and J. D. Ahearn, "512-channel vertical-cavity surface-emitting laser-based free-space optical link," Appl. Opt. 41, 5552-5561 (2002).
  9. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, and M. Hibbs-Brenner, "Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors," Appl. Opt. 38, 6190-6200 (1999).
  10. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, and L. A. Coldren, "Parallel free-space optical interconect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses," Appl. Opt. 37, 2811-2821 (1998).
  11. R. Wong, A. D. Rakic, and M. L. Majewski, "Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays," Appl. Opt. 41, 3469-3478 (2002).
  12. R. Wong, A. D. Rakic, and M. L. Majewski, "Analysis of lensless free-space optical interconnects based on multi-transverse mode vertical-cavity-surface-emitting lasers," Opt. Commun. 167, 261-271 (1999). [CrossRef]
  13. X. Zheng, P. J. Marchand, D. Huang, and S. C. Esener, "Free-space parallel multichip interconnection system," Appl. Opt. 39, 3516-3524 (2000).
  14. N. S. Petrovic and A. D. Rakic, "Modeling diffraction in free-space optical interconnects by the mode expansion method," Appl. Opt. 42, 5308-5318 (2003).
  15. X. Zheng, P. J. Marchand, D. Huang, O. Kibar, and S. C. Esener, "Cross talk and ghost talk in a microbeam free-space optical interconnect system with vertical-cavity surface-emitting lasers, microlens, and metal-semiconductor-metal detectors," Appl. Opt. 39, 4834-4841 (2000).
  16. F. Lacroix, M. Châteauneuf, X. Xue, and A. G. Kirk, "Experimental and numerical analyses of misalignment tolerances in free-space optical interconnects," Appl. Opt. 39, 704-713 (2000).
  17. F.-C. F. Tsai, C. J. O'Brien, and A. D. Rakic, "Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes," Appl. Opt. 44, 6380-6387 (2005). [CrossRef]
  18. N. S. Petrović, A. D. Rakić, and M. L. Majewski, "Free-space optical interconnect with improved signal-to-noise ratio," in Proceedings of the 27th European Conference on Optical Communication (ECOC, 2001), Vol. 13, pp. 292-293.
  19. G. Keiser, Optical Fiber Communications (McGraw-Hill, 2000).
  20. D. Derickson,Fiber Optic Test and Measurement (Prentice Hall PTR, 1998).
  21. A. E. Siegman, Lasers (University Science Books, 1986).
  22. K. Petermann, Laser Diode Modulation and Noise (KTK Scientific Publishers, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited