OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 13 — May. 1, 2007
  • pp: 2503–2506

Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions

Feng Xu, Yungang Zhang, Gabriel Somesfalean, Huashan Wang, Shaohua Wu, and Zhiguo Zhang  »View Author Affiliations

Applied Optics, Vol. 46, Issue 13, pp. 2503-2506 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (299 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A spectroscopic system for continuous real-time monitoring of SO 2 concentrations in industrial emissions was developed. The sensor is well suited for field applications due to simple and compact instrumental design, and robust data evaluation based on ultraviolet broadband absorption without the use of any calibration cell. The sensor has a detection limit of 1 ppm, and was employed both for gas-flow simulations with and without suspended particles, and for in situ measurement of SO 2 concentrations in the flue gas emitted from an industrial coal-fired boiler. The price∕performance ratio of the instrument is expected to be superior to other comparable real-time monitoring systems.

© 2007 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.1030) Spectroscopy : Absorption
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:

Original Manuscript: July 12, 2006
Revised Manuscript: December 12, 2006
Manuscript Accepted: December 19, 2006
Published: April 9, 2007

Feng Xu, Yungang Zhang, Gabriel Somesfalean, Huashan Wang, Shaohua Wu, and Zhiguo Zhang, "Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions," Appl. Opt. 46, 2503-2506 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Weibring, M. Andersson, H. Edner, and S. Svanberg, "Remote monitoring of industrial emissions by combination of lidar and plume velocity measurements," Appl. Phys. B 66, 383-388 (1998). [CrossRef]
  2. I. Linnerud, P. Kaspersen, and T. Jæger, "Gas monitoring in the process industry using diode laser spectroscopy," Appl. Phys. B 67, 297-305 (1998). [CrossRef]
  3. H. Edner, P. Ragnarson, S. Spännare, and S. Svanberg, "Differential optical absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring," Appl. Opt. 32, 327-333 (1993). [CrossRef] [PubMed]
  4. U. Platt, "Differential optical absorption spectroscopy (DOAS)," in Air Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), Vol. 127 of Chemical Physics Series pp. 27-84.
  5. U. Platt and D. Perner, "Direct measurement of atmospheric CH2O, HNO2, O3, and SO2 by differential absorption in the near UV," J. Geophys. Res. 85, 7453-7458 (1980). [CrossRef]
  6. J. Mellqvist, H. Axelsson, and A. Rosén, "DOAS for flue gas monitoring-III. in-situ monitoring of sulfur dioxide, nitrogen monoxide and ammonia," J. Quant. Spectrosc. Transfer 56, 225-240 (1996). [CrossRef]
  7. M. M. Millan and R. M. Hoff, "Remote sensing of air pollutants by correlation spectroscopy--instrumental response characteristics," Atmos. Environ. 12, 853-864 (1978). [CrossRef] [PubMed]
  8. P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano, "Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC)," Appl. Phys. B 67, 419-426 (1998). [CrossRef]
  9. C. Oppenheimer, P. Francis, and J. Stix, "Depletion rates of sulfur dioxide in tropospheric volcanic plumes," Geophys. Res. Lett. 25, 2671-2674 (1998). [CrossRef]
  10. S. Svanberg, "Environmental and medical applications of photonic interactions," Phys. Scr. T110, 39-50 (2004). [CrossRef]
  11. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, and W. Wendt, "Mobile remote sensing system for atmospheric monitoring," Appl. Opt. 26, 4330-4338 (1987). [CrossRef] [PubMed]
  12. P. Weibring, H. Edner, and S. Svanberg, "Versatile mobile lidar system for environmental monitoring," Appl. Opt. 42, 3583-3594 (2003). [CrossRef] [PubMed]
  13. P. Weibring, J. Swartling, H. Edner, S. Svanberg, T. Caltabiano, D. Condarelli, G. Cecchi, and L. Pantani, "Optical monitoring of volcanic sulphur dioxide emissions--comparison between four different remote-sensing spectroscopic techniques," Opt. Lasers Eng. 37, 267-284 (2002). [CrossRef]
  14. G. Somesfalean, Z. G. Zhang, M. Sjöholm, and S. Svanberg, "All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection," Appl. Phys. B. 80, 1021-1025 (2005). [CrossRef]
  15. F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang, "Concentration evaluation method using broadband absorption spectroscopy for sulfur dioxide monitoring," Appl. Phys. Lett. 88, 231109 (2006). [CrossRef]
  16. F. Xu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, H. S. Wang, and S. H. Wu, "Temperature-corrected spectroscopic evaluation method for gas concentration monitoring," Appl. Phys. B 86, 361-364 (2007). [CrossRef]
  17. S. Svanberg, in Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Springer, 2004), pp. 164-165.
  18. D. J. Brassington, "Measurement of the SO2 absorption spectrum between 297 and 316 nm using a tunable dye laser," Laboratory Note RD/L/N 184/79 (Central Electricity Research Laboratories, Leatherhead, UK, 1979).
  19. D. J. Brassington, "Sulfur dioxide absorption cross-section measurements from 290 nm to 317 nm," Appl. Opt. 20, 3774-3779 (1981). [CrossRef] [PubMed]
  20. Z. Y. Zhang, W. H. Li, Z. G. Xu, and S. J. Qu, in On the Appropriate Processing and Utilization of Coal (Chinese U. of Mineralogy, 2000), pp. 53-55.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited