OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 14 — May. 10, 2007
  • pp: 2683–2687

Information throughput of photorefractive spatial solitons in the telecommunication range

M. Tiemann, J. Schmidt, V. M. Petrov, J. Petter, and T. Tschudi  »View Author Affiliations

Applied Optics, Vol. 46, Issue 14, pp. 2683-2687 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photorefractive spatial solitons are attractive elements because they can be used as controllable optical interconnectors for all-optical devices. To our knowledge, until now their properties were investigated in terms of energy transportation. We suggest considering photorefractive spatial solitons as optically induced information channels. The experimental technique to measure the information throughput of photorefractive spatial solitons in accordance with Shannon's definition was developed and demonstrated by us. We experimentally demonstrated that in the wavelength range of 1520 1630 nm it can be estimated as large as 90 Tbits / s . We also experimentally demonstrate a measurement of the group-velocity dispersion and show the limitation of the pulse transfer rate of the induced waveguides to 6.2 THz .

© 2007 Optical Society of America

OCIS Codes
(190.5330) Nonlinear optics : Photorefractive optics
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Optical Devices

Original Manuscript: October 10, 2006
Manuscript Accepted: December 15, 2006
Published: April 23, 2007

M. Tiemann, J. Schmidt, V. M. Petrov, J. Petter, and T. Tschudi, "Information throughput of photorefractive spatial solitons in the telecommunication range," Appl. Opt. 46, 2683-2687 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992). [CrossRef] [PubMed]
  2. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev. Lett. 71, 533-536 (1993). [CrossRef] [PubMed]
  3. Z. Chen, M. Mitchell, and M. Segev, "Steady-state photorefractive soliton-induced Y-junction waveguides and high-order dark spatial solitons," Opt. Lett. 21, 716-718 (1996). [CrossRef] [PubMed]
  4. J. Petter and C. Denz, "Guiding and dividing waves with photorefractive solitons," Opt. Commun. 188, 55-61 (2001). [CrossRef]
  5. S. Lan, E. DelRe, Z. Chen, M. Shih, and M. Segev, "Directional coupler with soliton-induced waveguides," Opt. Lett. 24, 475-477 (1999). [CrossRef]
  6. W. Królikowski, N. Akhmediev, B. Luther-Davis, and M. Cronin-Golomb, "Self-bending photorefractive solitons," Phys. Rev. E. 54, 5761-5765 (1996). [CrossRef]
  7. J. Petter, C. Weilnau, C. Denz, A. Stepken, and F. Kaiser, "Self-bending of photorefractive solitons," Opt. Commun. 170, 291-297 (1999). [CrossRef]
  8. E. DelRe, M. Tamburrini, and A. J. Agranat, "Soliton electro-optic effects in paraelectrics," Opt. Lett. 25, 963-965 (2000). [CrossRef]
  9. A. V. Mamaev, M. Saffman, and A. A. Zozulya, "Phase-dependent collisions of (2 + 1)-dimensional spatial solitons," J. Opt. Soc. Am. B 15, 2079-2082 (1998). [CrossRef]
  10. T. Ku, M. Shih, A. A. Sukhorukov, and Y. S. Kivshar, "Coherence controlled soliton interactions," Phys. Rev. Lett. 94, 063904-1-063904-4 (2005). [CrossRef]
  11. J. Petter, J. Schroeder, D. Traeger, and C. Denz, "Optical control of arrays of photorefractive screening solitons," Opt. Lett. 28, 438-440 (2003). [CrossRef] [PubMed]
  12. D. Traeger, A. Striníc, J. Schroeder, C. Denz, M. Belíc, M. Petrovíc, S. Matern, and H. G. Purwins, "Interactions in large arrays of solitons in photorefractive crystals," J. Opt. A 5, 5518-5523 (2003).
  13. S. Lan, M. Shih, G. Mizell, J. A. Giordmaine, Z. Chen, C. Anastassiou, J. Martin, and M. Segev, "Second-harmonic generation in waveguides induced by photorefractive spatial solitons," Opt. Lett. 24, 1145-1147 (1999). [CrossRef]
  14. M. Morin, G. Duree, G. Salamo, and M. Segev, "Waveguides formed by quasi-steady-state photorefractive spatial solitons," Opt. Lett. 20, 2066-2068 (1995). [CrossRef] [PubMed]
  15. M. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, "Waveguides induced by photorefractive screening solitons," J. Opt. Soc. Am. B 14, 3091-3101 (1997). [CrossRef]
  16. S. Lan, M. Shih, and M. Segev, "Self-trapping of one-dimensional optical beams and induced waveguides in photorefractive KNbO3," Opt. Lett. 22, 1467-1469 (1997). [CrossRef]
  17. D. Traeger, N. Sagemerten, and C. Denz, "Guiding of dynamically modulated signals in arrays of photorefractive spatial solitons," IEEE. J. Sel. Top. Quantum Electron. 12, 383-387 (2006). [CrossRef]
  18. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (The University of Illinois Press, 1964).
  19. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, "Steady-state spatial screening soliton in photorefractive materials with external applied field," Phys. Rev. Lett. 73, 3211-3214 (1994). [CrossRef] [PubMed]
  20. W. Haist, Optische Telekommunikationssysteme (Damm-Verlag, 1989).
  21. A. P. Kovacs, K. Osvay, Zs. Bor, and R. Szipcs, "Group-delay measurement on laser mirrors by spectraly resolved white-light interferometry," Opt. Lett. 20, 788-790 (1995). [CrossRef] [PubMed]
  22. M. Beck and I. A. Walmsley, "Measurement of group delay with high temporal and spectral resolution," Opt. Lett. 15, 492-494 (1990). [CrossRef] [PubMed]
  23. M. Saffman and A. A. Zozulya, "Circular solitons do not exist in photorefractive media," Opt. Lett. 23, 1579-1581 (1998). [CrossRef]
  24. G. S. García Quirino, M. D. Iturbe Castillo, J. J. Sánchez-Mondragón, S. Stepanov, and V. Vysloukh, "Interferometric measurements of the photoinduced refractive index profiles in photorefractive Bi12TiO20 crystal," Opt. Commun. 123, 597-602 (1996). [CrossRef]
  25. A. E. Siegman, Lasers (University Science Books, 1986).
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited