OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 15 — May. 20, 2007
  • pp: 2870–2880

Thermodynamic-temperature determinations of the Ag and Au freezing temperatures using a detector-based radiation thermometer

Howard W. Yoon, David W. Allen, Charles E. Gibson, Maritoni Litorja, Robert D. Saunders, Steven W. Brown, George P. Eppeldauer, and Keith R. Lykke  »View Author Affiliations


Applied Optics, Vol. 46, Issue 15, pp. 2870-2880 (2007)
http://dx.doi.org/10.1364/AO.46.002870


View Full Text Article

Enhanced HTML    Acrobat PDF (2223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of a radiation thermometer calibrated for spectral radiance responsivity using cryogenic, electrical-substitution radiometry to determine the thermodynamic temperatures of the Ag- and Au-freezing temperatures is described. The absolute spectral radiance responsivity of the radiation thermometer is measured in the NIST Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) facility with a total uncertainty of 0.15 % ( k = 2 ) and is traceable to the electrical watt, and thus the thermodynamic temperature of any blackbody can be determined by using Planck radiation law and the measured optical power. The thermodynamic temperatures of the Ag- and Au-freezing temperatures are determined to be 1234.956   K   ( ± 0.110   K ) ( k = 2 ) and 1337.344   K ( ± 0.129   K ) ( k = 2 ) differing from the International Temperature Scale of 1990 (ITS-90) assignments by 26 mK and 14 mK , respectively, within the stated uncertainties. The temperatures were systematically corrected for the size- of-source effect, the nonlinearity of the preamplifier and the emissivity of the blackbody. The ultimate goal of these thermodynamic temperature measurements is to disseminate temperature scales with lower uncertainties than those of the ITS-90. These results indicate that direct disseminations of thermodynamic temperature scales are possible.

© 2007 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.6780) Instrumentation, measurement, and metrology : Temperature

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 14, 2006
Manuscript Accepted: December 18, 2006
Published: May 1, 2007

Citation
Howard W. Yoon, David W. Allen, Charles E. Gibson, Maritoni Litorja, Robert D. Saunders, Steven W. Brown, George P. Eppeldauer, and Keith R. Lykke, "Thermodynamic-temperature determinations of the Ag and Au freezing temperatures using a detector-based radiation thermometer," Appl. Opt. 46, 2870-2880 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-15-2870


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Quinn, Temperature (Academic, 1990), pp. 20-22.
  2. L. A. Guildner and R. E. Edsinger, "Deviation of the international practical temperatures from thermodynamic temperatures in the temperature range from 273.16 K to 730 K," J. Res. Natl. Bur. Stand. 80A, 703-738 (1976).
  3. M. R. Moldover, S. J. Boyes, C. W. Meyer, and A. R. H. Goodwin, "Thermodynamic temperatures of the triplepoints of mercury and Gallium in the interal 217 K to 303 K," J. Res. Natl. Inst. Stand. Technol . 104, 11-46 (1999).
  4. L. Crovini and A. Actis, "Noise thermometry in the range 630 °C to 962 °C," Metrologia 14, 69-78 (1978). [CrossRef]
  5. R. E. Edsinger and J. F. Schooley, "Differences between thermodynamic temperature and t (IPTS-68) in the range 230 °C to 660 °C," Metrologia 26, 95-106 (1989). [CrossRef]
  6. D. R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A. L. Reesink, F. Edler, H. Sakurai, R. L. Shepard, and J. C. Gallop, "The status of Johnson noise thermometry," Metrologia 33, 325-335 (1996). [CrossRef]
  7. Supplementary Information for the International Temperature Scale of 1990, Sèvres, Bureau International des Poids et Mesures, 1990.
  8. T. J. Quinn and J. E. Martin, "A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between −40 °C and +100 °C," Philos. Trans. R. Soc. 316, 85-189 (1985). [CrossRef]
  9. H. W. Yoon and C. E. Gibson, in Proceedings of TEMPMEKO'99, J. F. Dubbledam and M. J. de Groot, eds., Vol. II (IMEKO/Nmi Van Swinden Laboratorium, Delft, 1999, pp. 737-742.
  10. N. P. Fox, J. E. Martin, and D. H. Nettleton, "Radiometric aspects of an experiment to determine the melting/freezing temperature of gold," Metrologia 28, 221-227 (1991). [CrossRef]
  11. W. R. Blevin and B. Steiner, "Redefinition of the candela and lumen," Metrologia 11, 97-104 (1975). [CrossRef]
  12. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, and W. G. Sainty, "Ion-beam-assisted deposition of thin films," Appl. Opt. 22, 178-184 (1983). [CrossRef] [PubMed]
  13. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, "Facility for spectral irradiance and radiance responsivity calibrations using uniform sources," Appl. Opt. 45, 8218-8237 (2006). [CrossRef] [PubMed]
  14. P. J. Mohr and B. N. Taylor, "CODATA recommended values of the fundamental physical constants: 2002," Rev. Mod. Phys. 77, 1-108 (2005). [CrossRef]
  15. G. P. Eppeldauer and J. E. Hardis, "Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature," Appl. Opt. 30, 3091-3099 (1991). [CrossRef] [PubMed]
  16. F. Sakuma and S. Hattori, "Establishing a practical temperature standard by using a narrow-band radiation thermometer with a silicon detector," in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (AIP, 1982), Vol. 5, pp. 421-427.
  17. V. I. Sapritsky and A. V. Prokhorov, "Spectral effective emissivities of nonisothermal cavities calculated by the Monte Carlo method," Appl. Opt. 34, 5645-5652 (1995). [CrossRef] [PubMed]
  18. G. Bauer and K. Bischoff, "Evaluation of the emissivity of a cavity source by reflection measurements," Appl. Opt. 10, 2639-2643 (1971). [CrossRef] [PubMed]
  19. C. K. Ma, "Method for the measurement of the effective emissivity of a cavity," in Proceedings of TEMPMEKO'04, D. Zvizdic, ed. (Laboratory for Process Measurement, Zagreb, 2005), pp. 575-580.
  20. F. Sakuma and L. Ma, "Evaluation of the fixed-point cavity emissivity at NMIJ," in Proceedings of TEMPMEKO'04, D. Zvizdic, ed. (Laboratory for Process Measurement, Zagreb, 2005), pp. 563-568.
  21. N. P. Fox, J. E. Martin, and D. H. Nettleton, "Absolute spectral radiometric determination of the thermodynamic temperatures of the melting/freezing points of gold, silver, and aluminum," Metrologia 28, 357-374 (1991). [CrossRef]
  22. K. D. Mielenz, R. D. Saunders, and J. B. Shumaker, "Spectroradiometric determination of the freezing temperature of gold," J. Res. Natl. Inst. Stand. Technol. 95, 49-67 (1990).
  23. R. L. Rusby, R. P. Hudson, M. Durieux, J. F. Schooley, P. P. M. Steur, and C. A. Swenson, "Thermodynamic basis of the ITS-90," Metrologia 28, 9-18 (1991). [CrossRef]
  24. J. Fischer, M. Battuello, M. Sadli, M. Ballico, S. N. Park, P. Saunders, Y. Zundong, B. C. Johnson, E. Van der Ham, F. Sakuma, G. Machin, N. Fox, W. Li, S. Ugur, and M. Matveyev, "Uncertainty budgets for realization of ITS-90 by radiation thermometry," in Temperature: Its Measurement and Control in Science and Industry, D. C. Ripple, ed. (AIP, 2003), Vol. 7, pp. 631-638.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited