OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 15 — May. 20, 2007
  • pp: 2990–2995

Raman shifter optimized for lidar at a 1.5 μm wavelength

Scott M. Spuler and Shane D. Mayor  »View Author Affiliations

Applied Optics, Vol. 46, Issue 15, pp. 2990-2995 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Raman shifter is optimized for generating high-energy laser pulses at a 1.54 μ m wavelength. A forward-scattering design is described, including details of the multiple pass and nonfocused optical design, Stokes injection seeding, and internal gas recirculation. First-Stokes conversion efficiencies up to 43%—equivalent to 62% photon conversion efficiency—were measured. Experimental results show output average power in excess of 17.5 W, pulse energies of 350   mJ at 50   Hz , with good beam quality ( M 2 < 6 ) . Narrow bandwidth and tunable output is produced when pumping with a single longitudinal mode Nd:YAG laser and seeding the process with a Stokes wavelength narrowband laser diode.

© 2007 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(140.3550) Lasers and laser optics : Lasers, Raman
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 4, 2006
Manuscript Accepted: December 23, 2006
Published: May 1, 2007

Scott M. Spuler and Shane D. Mayor, "Raman shifter optimized for lidar at a 1.5 μm wavelength," Appl. Opt. 46, 2990-2995 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. American National Standard for the Safe Use of Lasers, "Standard for the safe use of lasers," Tech. Rep. ANSI Z136.1-2000 (America American National Standards Institute, 2000).
  2. E. M. Patterson, D. W. Roberts, and G. G. Gimmestad, "Initial measurements using a 1.54 micron eyesafe Raman shifted lidar," Appl. Opt. 28, 4978-4981 (1989). [CrossRef] [PubMed]
  3. W. Carnuth and T. Trickl, "A powerful eyesafe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 micron radiation," Rev. Sci. Instrum. 65, 3324-3331 (1994). [CrossRef]
  4. G. Roy and P. Mathieu, "Comparison of Raman and degenerated optical parameteric oscillators for a high-energy and high-repetition-rate eye-safe laser," Opt. Eng. 35, 3579-3584 (1996). [CrossRef]
  5. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, and J. L. Bufton, "Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 microns by airborne hard-target-calibrated Nd:YAG/methane Raman lidar," Appl. Opt. 36, 3475-3490 (1997). [CrossRef] [PubMed]
  6. V. A. Kovalev and W. E. Eichinger, Elastic Lidar (Wiley, 2004). [CrossRef]
  7. D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, and D. R. Preussler, "Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane," J. Phys. D 19, 1421-1427 (1986). [CrossRef]
  8. L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, and H. van den Bergh, "Experimental investigation of high-power single pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers," Appl. Opt. 36, 5026-5042 (1997). [CrossRef] [PubMed]
  9. R. Stultz, D. E. Nieuwsma, and E. Gregor, "Eyesafe high pulse rate laser progress at hughes," in Eyesafe Lasers: Componets, Systems, and Applications,Proc. SPIE 1419, 64-74 (1991). [CrossRef]
  10. M. J. Shaw, J. P. Partanen, Y. Owadano, I. N. Ross, E. Hodgson, C. B. Edwards, and F. O'Neill, "High-power forward Raman amplifiers employing low-pressure gases in light guides. II. Experiments," J. Opt. Soc. Am. B 3, 1466-1475 (1986). [CrossRef]
  11. V. Simeonov, V. Mitev, H. van de Bergh, and B. Calpini, "Raman frequency shifting in a CH4:H2:Ar mixture pumped by the fourth harmonic of a Nd:YAG laser," Appl. Opt. 37, 7112-7115 (1998). [CrossRef]
  12. N. A. Kurnit, R. F. Harrison, R. R. Karl, Jr., J. P. Brucker, J. Busse, W. K. Grace, O. G. Peterson, W. Baird, and W. S. Hungate, "Generation of 1.54 micron radiation with application to an eye-safe laser lidar," in Proceedings of the International Conference on LASERS '97, S. Press, ed. (McLean, 1998), pp. 608-610.
  13. S. D. Mayor and S. M. Spuler, "Raman-shifted eye-safe aerosol lidar," Appl. Opt. 43, 3915-3924 (2004). [CrossRef] [PubMed]
  14. P. Maroni, D. Papageorgopoulos, A. Ruf, R. D. Beck, and T. R. Rizzo, "Efficient stimulated Raman pumping for quantum state resolved surface reactivity measurements," Rev. Sci. Instrum. 77, 054103 (2006). [CrossRef]
  15. D. C. MacPherson, R. C. Swanson, and J. L. Carlsten, "Stimulated Raman scattering in the visible with a multipass cell," IEEE J. Quantum Electron. 25, 1741-1746 (1989). [CrossRef]
  16. P. R. Battle, J. G. Wessel, and J. L. Carlsten, "Gain-guiding effects in an amplifier with focused gain," Phys. Rev. A 48, 707-716 (1993). [CrossRef] [PubMed]
  17. K. Sassen, "The polarization lidar technique for cloud research: a review and current assessment," Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991). [CrossRef]
  18. S. D. Mayor, S. M. Spuler, and B. M. Morley, "Scanning eye-safe depolarization lidar at 1.54 microns and potential usefulness in bioaerosol plume detection," in Lidar Remote Sensing for Environmental Monitoring IV (Society of Photo-Optical Instrumentation Engineers, 2005).
  19. J. G. Wessell, K. Repasky, and J. L. Carlsten, "Competition between spontaneous scattering and stimulated scattering in an injection-seeded Raman amplifier," Phys. Rev. A 53, 1854-1860 (1996). [CrossRef]
  20. S. M. Spuler and S. Mayor, "Scanning eye-safe elastic backscatter lidar at 1.54 microns," J. Atmos. Ocean. Technol. 22, 696-703 (2005). [CrossRef]
  21. L. Schoulepnikoff and V. Mitev, "High-gain single pass stimulated Raman scattering and four-wave mixing in a focused beam geometry: a numerical study," Pure Appl. Opt. 6, 277-302 (1997). [CrossRef]
  22. T. Warner, P. Benda, S. Swerdlin, J. Knievel, E. Argenta, B. Aronian, B. Balsley, J. Bowers, R. Carter, P. A. Clark, K. Clawson, J. Copeland, A. Crook, R. Frehlich, M. L. Jensen, Y. Liu, S. Mayor, Y. Meillier, B. Morley, R. Sharman, S. Spuler, D. Storwold, J. Sun, J. Weil, M. Xu, A. Yates, and Y. Zhang, "The pentagon shield program toward critical infrastructure protection," Bull. Am. Meteor. Soc. 88, 167-176, doi: (2007). [CrossRef]
  23. A. Kazzaz, S. Ruschin, I. Shoshan, and G. Ravnitsky, "Stimulated Raman scattering in methane--experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994). [CrossRef]
  24. C. S. Wang, "Theory of Raman scattering," Phys. Rev. 182, 482-494 (1969). [CrossRef]
  25. M. G. Raymer and J. Mostowski, "Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation," Phys. Rev. A 24, 1980-1992 (1981). [CrossRef]
  26. D. C. MacPherson, R. C. Swanson, and J. L. Carlsten, "Quantum fluctuations in the stimulated-Raman-scattering linewidth," Phys. Rev. Lett. 66, 66-69 (1988). [CrossRef]
  27. W. C. Swann and S. L. Gilbert, "Line centers, pressure shift, and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines," J. Opt. Soc. Am. B 22, 1749-1756 (2005). [CrossRef]
  28. X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Highly efficient Raman conversion on O2 pumped by a seeded narrow band second-harmonic Nd:YAG laser," Appl. Phys. B 81, 525-530 (2005). [CrossRef]
  29. G. G. Gimmestad, "Differential-absorption lidar for ozone and industrial emissions," in Lidar, C. Weitkamp, ed. (Springer, 2005), pp. 187-212. [CrossRef]
  30. J. Bösenberg, "Differential-absorption lidar for water vapor and temperature profiling," in Lidar, C. Weitkamp, ed. (Springer, 2005), pp. 213-239. [CrossRef]
  31. E. W. Eloranta, "High spectral resolution lidar," in Lidar, C. Weitkamp, ed. (Springer, 2005), pp. 143-163. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited