OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 15 — May. 20, 2007
  • pp: 3038–3045

Use of polar decomposition for the diagnosis of oral precancer

Jungrae Chung, Woonggyu Jung, Marie J. Hammer-Wilson, Petra Wilder-Smith, and Zhongping Chen  »View Author Affiliations


Applied Optics, Vol. 46, Issue 15, pp. 3038-3045 (2007)
http://dx.doi.org/10.1364/AO.46.003038


View Full Text Article

Enhanced HTML    Acrobat PDF (2095 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Mueller matrix describes all the polarizing properties of a sample and, therefore, the optical differences between noncancerous and precancerous tissue that may be present within the matrix elements. A high-speed polarimetry system that generates 16 ( 4 × 4 ) full Mueller matrices to characterize tissues is presented. Feature extraction is done on the Mueller matrix elements resulting in depolarization and retardance images by polar decomposition. These are used to detect and classify early oral cancers and precancerous changes in epithelium such as dysplasia. These images are compared with orthogonal polarization images and analyzed in an attempt to identity useful factors for the differentiation between cancerous lesions and their benign counterparts. Our results indicate that polarimetry has potential as a method for the in vivo early detection and diagnosis of oral premalignancy.

© 2007 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(230.0230) Optical devices : Optical devices
(230.5440) Optical devices : Polarization-selective devices
(290.7050) Scattering : Turbid media

ToC Category:
Optical Devices

History
Original Manuscript: June 29, 2006
Revised Manuscript: December 13, 2006
Manuscript Accepted: January 5, 2007
Published: May 1, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Jungrae Chung, Woonggyu Jung, Marie J. Hammer-Wilson, Petra Wilder-Smith, and Zhongping Chen, "Use of polar decomposition for the diagnosis of oral precancer," Appl. Opt. 46, 3038-3045 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-15-3038


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. http://www.cancer.org/downloads/STT/CAFF2007PWSecured.pdf.
  2. NIH-National Cancer Institute, What You Need To Know About Skin Cancer, NIH Publication No. 95-1564 (1995).
  3. S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissue with polarized light," Lasers Surg. Med. 26, 119-129 (2000). [CrossRef]
  4. K. Sokolov, R. A. Drezek, K. Gossage, and R. R. Richards-Kortum, "Reflectance spectroscopy with polarized light: Is it sensitive to cellular and nuclear morphology," Opt. Express 5, 302-317 (1999).
  5. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7, 378-387 (2002). [CrossRef]
  6. M. H. Smith, "Interpreting Mueller matrix images of tissues," in Proc. SPIE 4257, 82-89 (2001). [CrossRef]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, W. M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef]
  8. W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef]
  9. Y. C. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, "Second-harmonic tomography of tissues," Opt. Lett. 22, 1323-1325 (1997).
  10. Barry R. Masters, Andres Kriete, and Jorg Kukulies, "Ultraviolet confocal fluorescence microscopy of the invitro cornea-redox metabolic imaging," Appl. Opt. 32, 592-596 (1993).
  11. S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997).
  12. S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep surface imaging in tissue using spectral and polarization filtering," Opt. Express 7, 23-28 (2000).
  13. W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kilkson, "Application of polarization effects in light scattering: a new biophysical tool," Proc. Natl. Acad. Sci. USA 73, 486-490 (1976). [CrossRef]
  14. K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, "Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology," Opt. Express 5, 302-317 (1999).
  15. M. Dogariu and T. Asakura, "Photon path length distribution from polarized backscattering in random media," Opt. Eng. 35, 2234 (1996). [CrossRef]
  16. B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, "Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium," Opt. Lett. 23, 485-487 (1998).
  17. B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, "Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium: errata," Opt. Lett. 23, 1630-1630 (1998).
  18. M. J. Rakovic, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, S. Rastegar, L. V. Wang, and G. L. Coté, "Light backscattering polarization patterns from turbid media: theory and experiment," Appl. Opt. 38, 3399-3408 (1999).
  19. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions," Appl. Opt. 36, 125-135 (1997). [CrossRef]
  20. S. L. Jacques, M. Ostemeyer, L. V. Wang, and D. Stephens, "Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers," in Proc. SPIE 2671, 199-210 (1996). [CrossRef]
  21. S. L. Jacques and K. Lee, "Imaging tissues with a polarized light video camera," in Proc. SPIE 3863, 68-74 (1999). [CrossRef]
  22. S. L. Jacques and R. J. Ramella-Roman, "Propagation of polarized light beams through biological tissues," in Proc. SPIE 3914, 345 (2000). [CrossRef]
  23. S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997).
  24. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, "Diffuse backscattering Mueller matrices of highly scattering media," Opt. Express 1, 441-453 (1997).
  25. F. Delplancke, "Automated high-speed Mueller matrix scatterometer," Appl. Opt. 36, 5388-5395 (1997).
  26. J. M. Bueno, "Polarimetry using liquid-crystal variable retarders: theory and calibration," J. Opt. A 2, 216-222 (2000).
  27. J. L. Pezzaniti and R. A. Chipman, "Mueller matrix imaging polarimetry," Opt. Eng. 34, 1558-1568 (1995). [CrossRef]
  28. M. Mujat and A. Dogariu, "Real-time measurement of the polarization transfer function," Appl. Opt. 40, 34-44 (2001).
  29. S. Y. Lu and R. A. Chipman, "Interpretation of Mueller matrices based on polar decomposition," J. Opt. Soc. Am. A 13, 1-8 (1996).
  30. J. J. Gil and E. Bernabeu, "Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix," Optik (Stuttgart) 76, 67-71 (1987).
  31. R. Sridhar and R. Simon, "Normal form for Mueller matrices in polarization optics," J. Mod. Opt. 41, 1903-1915 (1994).
  32. G. L. Liu, Y. Li, and B. D. Cameron, "Polarization-based optical imaging and processing techniques with application to cancer diagnostics," in International Biomedical Optics Conference,Proc. SPIE 4617, 208-220 (2002). [CrossRef]
  33. M. H. Smith, A Lompado, and P. Burke, "Mueller matrix imaging polarimetry in dermatology," in Proc. SPIE 3911, 210-216 (2000). [CrossRef]
  34. J. S. Baba, J. R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, "Development and calibration of an automated Mueller matrix polarization imaging system," J. Biomed. Opt. 7, 341-349 (2002). [CrossRef]
  35. L. Wang and S. Jacques, "Non-invasive detection of skin cancers by measuring optical properties of tissue," in Proc. SPIE 2395, 548-558 (1995). [CrossRef]
  36. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elseveir, 1987).
  37. S. Y. Lu and R. A. Chipman, "Interpretation of Mueller matrices based on polar decomposition," J. Opt. Soc. Am. A 13, 1-8 (1996).
  38. J. J. Salley, "Experimental carcinogenesis in the cheek pouch of the Syrian hamster," J. Dent. Res. 33, 253-262 (1954).
  39. A. Ebihara, T. B. Krasieva, L. H. Liaw, S. Fago, D. Messadi, K. Osann, and P. Wilder-Smith, "Detection and diagnosis of oral cancer by light-induced fluorescence," Lasers Surg. Med. 32, 17-24 (2004). [CrossRef]
  40. P. Wilder-Smith, A. Ebihara, L. H. Liaw, T. B. Krasieva, and D. Messadi, "Detection of dysplasia and malignancy in oral mucosa using autofluorescence," Lasers Surg. Med. 12, 264 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited