OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 16 — Jun. 1, 2007
  • pp: 3079–3086

Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser

Yiping Wang, Dong Ning Wang, Wei Jin, and Yunjiang Rao  »View Author Affiliations


Applied Optics, Vol. 46, Issue 16, pp. 3079-3086 (2007)
http://dx.doi.org/10.1364/AO.46.003079


View Full Text Article

Enhanced HTML    Acrobat PDF (1909 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Asymmetric transverse-load characteristics and the polarization dependence of long-period fiber gratings (LPFGs) written by high-frequency CO 2 laser pulses are investigated in detail. It is demonstrated that the resonant wavelength is dependent on the direction of the applied force and on the polarization state of the input light; however, the coupling strength is independent of these parameters. When a transverse load is applied along different orientations of the LPFG, the resonant wavelength may be shifted toward the longer wavelength, the shorter wavelength, or hardly shifted, whereas the absolute value of peak transmission attenuation is linearly decreased with an increase of the applied transverse load, with almost no sensitivity to the load direction. These unique transverse-load characteristics and the polarization dependence are due to the load-induced birefringence that leads to the rotation of optical principal axes in the LPFG.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 10, 2007
Manuscript Accepted: February 16, 2007
Published: May 15, 2007

Citation
Yiping Wang, Dong Ning Wang, Wei Jin, and Yunjiang Rao, "Asymmetric transverse-load characteristics and polarization dependence of long-period fiber gratings written by a focused CO2 laser," Appl. Opt. 46, 3079-3086 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-16-3079


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," J. Lightwave Technol. 14, 58-65 (1996). [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996). [CrossRef] [PubMed]
  3. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). [CrossRef]
  4. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electron. Lett. 34, 302-303 (1998). [CrossRef]
  5. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses," J. Lightwave Technol. 21, 1320-1327 (2003). [CrossRef]
  6. Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, "Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber," Appl. Phys. Lett. 89, 151105-3 (2006). [CrossRef]
  7. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, "High-temperature stability of long-period fiber gratings produced using an electric arc," J. Lightwave Technol. 19, 1574-1579 (2001). [CrossRef]
  8. I. K. Hwang, S. H. Yun, and B. Y. Kim, "Long-period fiber gratings based on periodic microbends," Opt. Lett. 24, 1263-1265 (1999). [CrossRef]
  9. C. Y. Lin, L. A. Wang, and G. W. Chern, "Corrugated long-period fiber gratings as strain, torsion, and bending sensors," J. Lightwave Technol. 19, 1159-1168 (2001). [CrossRef]
  10. C. Y. Lin and L. A. Wang, "A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating," IEEE Photon. Technol. Lett. 13, 332-334 (2001). [CrossRef]
  11. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, "Tunable mechanically induced long-period fiber gratings," Opt. Lett. 25, 710-712 (2000). [CrossRef]
  12. J. Y. Cho and K. S. Lee, "A birefringence compensation method for mechanically induced long-period fiber gratings," Opt. Commun. 213, 281-284 (2002). [CrossRef]
  13. Y. P. Wang, J. P. Chen, and Y. J. Rao, "Torsion characteristics of long-period fiber gratings induced by high-frequency CO2 laser pulses," J. Opt. Soc. Am. B 22, 1167-1172 (2005). [CrossRef]
  14. Y. P. Wang and Y. J. Rao, "A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously," IEEE Sens. J. 5, 839-843 (2005). [CrossRef]
  15. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, and E. N. Glytsis, "Axial rotation dependence of resonances in curved CO2-laser-induced long-period fibre gratings," Electron. Lett. 36, 1354-1355 (2000). [CrossRef]
  16. H. J. Patrick, "Self-aligning, bipolar bend transducer based on long period grating written in eccentric core fibre," Electron. Lett. 36, 1763-1764 (2000). [CrossRef]
  17. Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, "Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating," IEEE Photon. Technol. Lett. 12, 531-533 (2000). [CrossRef]
  18. Y. Liu, L. Zhang, and I. Bennion, "Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre," Electron. Lett. 35, 661-663 (1999). [CrossRef]
  19. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999). [CrossRef]
  20. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, "Residual stress relaxation in the core of optical fiber by CO2 laser irradiation," Opt. Lett. 26, 1657-1659 (2001). [CrossRef]
  21. J. Calero, S. P. Wu, C. Pope, S. L. Chuang, and J. P. Murtha, "Theory and experiments on birefringent optical fibers embedded in concrete structures," J. Lightwave Technol. 12, 1081-1091 (1994). [CrossRef]
  22. J. Calero, S. L. Chuang, and J. P. Murtha, "Anomalous optical transmission due to strain-induced optical axis rotation in optical fibers embedded in concrete," Smart Mater. Struct. 7, 12-22 (1998). [CrossRef]
  23. H. S. Ryu, Y. Park, S. T. Oh, Y. J. Chung, and D. Y. Kim, "Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating," Opt. Lett. 28, 155-157 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited