OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 16 — Jun. 1, 2007
  • pp: 3263–3268

Design of a broadband highly dispersive pure silica photonic crystal fiber

Harish Subbaraman, Tao Ling, YongQiang Jiang, Maggie Y. Chen, Peiyan Cao, and Ray T. Chen  »View Author Affiliations


Applied Optics, Vol. 46, Issue 16, pp. 3263-3268 (2007)
http://dx.doi.org/10.1364/AO.46.003263


View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A highly dispersive dual-concentric-core pure silica photonic crystal fiber is designed with a maximum chromatic dispersion value of about 9500 ps / ( nm   km ) around the 1.56   μm wavelength region and a full width at half-maximum (FWHM) of 55   nm . The change in the dispersion–bandwidth product as a function of period is carefully studied by using the plane wave expansion method. The coupled mode theory matches well with the plane wave expansion method that was used to simulate the chromatic dispersion. This kind of a photonic crystal fiber structure is suitable for high-dispersion application in phased array antenna systems based on photonic crystal fiber arrays.

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 14, 2006
Revised Manuscript: January 22, 2007
Manuscript Accepted: January 26, 2007
Published: May 15, 2007

Citation
Harish Subbaraman, Tao Ling, YongQiang Jiang, Maggie Y. Chen, Peiyan Cao, and Ray T. Chen, "Design of a broadband highly dispersive pure silica photonic crystal fiber," Appl. Opt. 46, 3263-3268 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-16-3263


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002). [CrossRef]
  2. E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, 1994).
  3. F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, "Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber," J. Lightwave Technol. 24, 442-448 (2006). [CrossRef]
  4. B. Jopson and A. Gnauck, "Dispersion compensation for optical fiber systems," IEEE Commun. Mag. 33, 96-102 (1995). [CrossRef]
  5. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  7. Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Opt. Lett. 27, 424-426 (2002). [CrossRef]
  8. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, "Ultralow loss and long length photonic crystal fiber," J. Lightwave Technol. 22, 7-10 (2004). [CrossRef]
  9. M. Koshib and K. Saitoh, "Simple evaluation of confinement losses in holey fibers," Opt. Commun. 253, 95-98 (2005). [CrossRef]
  10. S. K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005). [CrossRef]
  11. Y. Jiang, T. Ling, L. Gu, W. Jiang, X. Chen, and R. T. Chen, "Highly dispersive photonic crystal waveguides and their applications in optical modulators and true-time delay lines," Proc. SPIE 6128, 61280Y (2006). [CrossRef]
  12. S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express. 14, 3528-3540 (2006). [CrossRef] [PubMed]
  13. B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.
  14. Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, "Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas," Opt. Eng. 44, 125001 (2005). [CrossRef]
  15. Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005). [CrossRef]
  16. Y. Jiang, Z. Shi, B. Howley, and R. T. Chen, "Highly dispersive photonic crystal fibers for true-time-delay modules of an X-band phased array antenna," Proc. SPIE 5360, 253-258 (2004). [CrossRef]
  17. F. Gérôme, J. L. Auguste, and J. M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2004). [CrossRef] [PubMed]
  18. U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995). [CrossRef]
  19. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phy. Rev. Lett. 65, 3152-3155 (1990). [CrossRef]
  20. RSoft Photonics CAD Suite, Version 5.1.7.
  21. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," J. Sel. Top. Quantum Electron. 6, 150-162 (2000). [CrossRef]
  22. R. Scarmozzino and R. M. Osgood, Jr., "Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications," J. Opt. Soc. Am. A 8, 724-731 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited