OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 16 — Jun. 1, 2007
  • pp: 3269–3275

Diode-pumped Nd:YAG laser with 38 W average power and user-selectable, flat-in-time subnanosecond pulses

John Honig, John Halpin, Don Browning, John Crane, Richard Hackel, Mark Henesian, John Peterson, Doug Ravizza, Tim Wennberg, Harry Rieger, and John Marciante  »View Author Affiliations

Applied Optics, Vol. 46, Issue 16, pp. 3269-3275 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2595 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A diode-pumped injection-seeded Nd:YAG laser system with an average output power of 38 W is described. The laser operates at 300 Hz with pulse energies up to 130 mJ . The temporal pulse shape is nominally flat in time and the pulse width is user selectable from 350 to 600 ps . In addition, the spatial profile of the beam is near top hat with contrast < 10% .

© 2007 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 5, 2007
Manuscript Accepted: February 16, 2007
Published: May 15, 2007

John Honig, John Halpin, Don Browning, John Crane, Richard Hackel, Mark Henesian, John Peterson, Doug Ravizza, Tim Wennberg, Harry Rieger, and John Marciante, "Diode-pumped Nd:YAG laser with 38 W average power and user-selectable, flat-in-time subnanosecond pulses," Appl. Opt. 46, 3269-3275 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Mehl, J. Bourderionnet, A. Brignon, E. Lallier, L. Boudjemaa, and C. Simon-Boisson, "Compact 300-W diode-pumped oscillator with 500 kW pulse peak power and external frequency doubling," in Conference on Lasers and Electro-Optics (CLEO 2001), Postconference Digest, Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America Washington, D.C., 2001), CThI6.
  2. Y. Bo, A. Geng, Y. Bi, Z. Sun, X. Yang, Q. Peng, H. Li, R. Li, D. Cui, and Z. Xu, "High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design," Appl. Opt. 45, 2499-2503 (2006). [CrossRef] [PubMed]
  3. B. Le Garrec, G. Razé, P. Thro, and M. Gilbert, "High-average-power diode-array-pumped frequency-doubled YAG laser," Opt. Lett. 21, 1990-1992 (1996). [CrossRef]
  4. E. Honea, C. Ebbers, R. Beach, J. Speth, J. Skidmore, M. Emanuel, and S. Payne, "Analysis of an intracavity-doubled diode-pumped q-switched Nd:YAG laser producing more than 100 W of power at 0.532 μm," Opt. Lett. 23, 1203-1205 (1998). [CrossRef]
  5. S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, "High-brightness 138-W green laser based on an intracvity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser," Opt. Lett. 25, 105-107 (2000). [CrossRef]
  6. S. Seidel and N. Kugler, "Nd:YAG 200-W average-power oscillator-amplifier system with stimulated-Brillouin-scattering phase conjugation and depolarization compensation," J. Opt. Soc. Am. B 14, 1885-1888 (1997). [CrossRef]
  7. H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, and M. Nakatsuka, "360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate," Opt. Lett. 28, 1671-1673 (2003). [CrossRef] [PubMed]
  8. K. Furuta, T. Kojima, S. Fujikawa, and J. Nishimae, "Diode-pumped 1kW Q-switched Nd:YAG rod laser with high peak power and high beam quality," Appl. Opt. 44, 4119-4122 (2005). [CrossRef] [PubMed]
  9. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, "Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system," Appl. Opt. 44, 582-590 (2005). [CrossRef] [PubMed]
  10. S. Amano and T. Mochizuki, "High average and high peak brightness slab laser," IEEE J. Quantum Electron. 37, 296-303 (2001). [CrossRef]
  11. A. Binder, H. Jaber, D. Ashkenasi, T. Riesbeck, and H. Eichler, "High-power and high-brightness solid state laser systems for precise and fast micromachining," Proc. SPIE 5339, 500-508 (2004). [CrossRef]
  12. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. QE-25, 214-220 (1989). [CrossRef]
  13. J. Zayhowski and C. Dill, "Diode-pumped passively q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994). [CrossRef] [PubMed]
  14. J. Zayhowski and P. Kelley, "Optimization of Q-switched lasers," IEEE J. Quantum Electron. 27, 2220-2224 (1991). [CrossRef]
  15. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1993).
  16. M. Dymott and K. Weingarten, "Picosecond diode-pumped laser system with 9.3-W average power and 2.3-mJ pulse energy," Appl. Opt. 40, 3042-3045 (2001). [CrossRef]
  17. D. Walker, C. Flood, H. van Driel, U. Greiner, and H. Klingenberg, "High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses," Appl. Phys. Lett. 65, 1992-1994 (1994). [CrossRef]
  18. M. Dawson, W. Schroeder, D. Norwood, A. Smirl, J. Weston, R. Ettelbrick, and R. Aubert, "Characterization of a high-gain picosecond flash-lamp-pumped Nd:YAG regenerative amplifier," Opt. Lett. 13, 990-992 (1998). [CrossRef]
  19. C. Gaeta, H. Rieger, I. Turcu, R. Forber, S. Campeau, K. Cassidy, M. Powers, A. Stone, J. Maldonado, S. Mrowka, G. French, J. Naungayan, C. Kelsy, P. Hark, J. Morris, R. Foster, J. Carosella, D. Fleming, R. Selzer, H. Siegert, H. Smith, M. Lim, Z. Cheng, J. Burdett, D. Gibson, R. Whitlock, C. Dozier, and D. Newman, "High-power collimated laser-plasma source for proximity x-ray nanolithography," J. Vac. Sci. Technol. B 21, 280-287 (2003). [CrossRef]
  20. S. Schiemann, W. Hogervorst, and W. Ubachs, "Fourier-transform-limited laser pulses tunable in wavelength and in duration (400-2000 ps)," IEEE J. Quantum Electron. 34, 407-412 (1998). [CrossRef]
  21. E. Moses, "The National Ignition Facility: Status and Plans for the Experimental Program," Fusion Sci. Technol. 44, 11-18 (2003).
  22. A. Jolly, J. Gleyze, J. Luce, H. Coic, and G. Deschaseaux, "Front-end sources of the LIL-LMJ fusion lasers: progress report and prospects," Opt. Eng. 42, 1427-1438 (2003). [CrossRef]
  23. D. Hinkel, S. Haan, A. Langdon, T. Dittrich, C. Still, and M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interaction," Phys. Plasmas 11, 1128-1144 (2004). [CrossRef]
  24. J. Honig, "Cleanliness improvements of National Ignition Facility amplifiers as compared to previous large-scale lasers," Opt. Eng. 43, 2904-2911 (2004). [CrossRef]
  25. E. Bliss, "Pulse duration dependence of laser damage mechanisms," Opto-electronics 3, 99-101 (1971). [CrossRef]
  26. B. Stuart, M. Feit, A. Rubenchik, B. Shore, and M. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248-2251 (1995). [CrossRef] [PubMed]
  27. K. Starke, T. Gross, D. Ristau, W. Riggers, and J. Ebert, "Laser-induced damage threshold of optical components for high repetition rate Nd:YAG lasers," Proc. SPIE 3578, 584-593 (1998). [CrossRef]
  28. C. Carr, J. Trenholme, and M. Spaeth, "The effect of temporal pulse shape on optical damage," Appl. Phys. Lett. 90, 041110 (2007). [CrossRef]
  29. M. D. Skeldon, "Optical pulse-shaping system based on an electronic optic modulator driven by an aperture-coupled-stripline electrical-waveform generator," J. Opt. Soc. Am. B 19, 2423-2426 (2002). [CrossRef]
  30. Koheras A/S, Blokken 84, DK-3460 Birkerod, Denmark.
  31. Keopsys SA, 21 Rue Louis de Broglie, 22300 Lannion, France.
  32. JMAR Technologies, Inc., 10905 Technology Place, San Diego, Calif. 92127, USA.
  33. R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, "High-average-power diode-pumped Yb:YAG lasers," Proc. SPIE 3889, 246-260 (2000). [CrossRef]
  34. ONYX Optics Corporation, 6551 Sierra Lane, Dublin, Calif. 94568, USA.
  35. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, "A novel approach for compensation of birefringence in cylindrical Nd:YAG rods," Opt. Quantum Electron. 28, 57-69 (1996). [CrossRef]
  36. L. Frantz and J. Nodvik, "Theory of pulse propagation in a laser amplifier," J. Appl. Phys. 34, 2346-2349 (1963). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited