OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 16 — Jun. 1, 2007
  • pp: 3276–3303

National Ignition Facility laser performance status

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem  »View Author Affiliations

Applied Optics, Vol. 46, Issue 16, pp. 3276-3303 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (9260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The National Ignition Facility (NIF) is the world's largest laser system. It contains a 192 beam neodymium glass laser that is designed to deliver 1.8   MJ at 500   TW at 351   nm in order to achieve energy gain (ignition) in a deuterium–tritium nuclear fusion target. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8   MJ total energy, with peak power of 500 TW and temporal pulse shapes spanning 2 orders of magnitude at the third harmonic ( 351   nm or 3 ω ) of the laser wavelength. The focal-spot fluence distribution of these pulses is carefully controlled, through a combination of special optics in the 1 ω ( 1053   nm ) portion of the laser (continuous phase plates), smoothing by spectral dispersion, and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). We report performance qualification tests of the first eight beams of the NIF laser. Measurements are reported at both 1 ω and 3 ω , both with and without focal-spot conditioning. When scaled to full 192 beam operation, these results demonstrate, to the best of our knowledge for the first time, that the NIF will meet its laser performance design criteria, and that the NIF can simultaneously meet the temporal pulse shaping, focal-spot conditioning, and peak power requirements for two candidate indirect drive ignition designs.

© 2007 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3610) Lasers and laser optics : Lasers, ultraviolet

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 7, 2006
Manuscript Accepted: January 8, 2007
Published: May 15, 2007

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, "National Ignition Facility laser performance status," Appl. Opt. 46, 3276-3303 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004). [CrossRef]
  2. M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004). [CrossRef]
  3. R. E. Bonanno, "Assembling and installing line-replaceable units for the National Ignition Facility," Opt. Eng. 43, 2866-2872 (2004). [CrossRef]
  4. R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004). [CrossRef]
  5. M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004). [CrossRef]
  6. E. I. Moses and C. R. Wuest, "The National Ignition Facility: laser performance and first experiments," Fusion Sci. Technol. 47, 314-322 (2005).
  7. J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, "Laser design basis for the National Ignition Facility," Fusion Technol. 26, 767-771 (1994).
  8. P. J. Wisoff, M. W. Bowers, G. V. Erbert, D. F. Browning, and D. R. Jedlovec, "NIF injection laser system," Proc. SPIE 5341, 146-155 (2004). [CrossRef]
  9. J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999). [CrossRef]
  10. M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999). [CrossRef]
  11. B. M. Van Wonterghem, J. R. Murray, J. H. Campbell, D. R. Speck, C. E. Barker, I. C. Smith, D. F. Browning, and W. C. Behrendt, "Performance of a prototype for a large-aperture multipass Nd:glass laser for inertial confinement fusion," Appl. Opt. 36, 4932-4953 (1997). [CrossRef] [PubMed]
  12. J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive (Springer, 1998).
  13. J. D. Lindl, "Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain," Phys. Plasmas 2, 3933-4024 (1995). [CrossRef]
  14. J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004). [CrossRef]
  15. D. E. Hinkel, S. W. Haan, A. B. Langdon, T. R. Dittrich, C. H. Still, and M. M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interactions," Phys. Plasmas 11, 1128-1144 (2004). [CrossRef]
  16. S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).
  17. K. R. Manes and W. W. Simmons, "Statistical optics applied to high-power glass lasers," J. Opt. Soc. Am. A 2, 528-538 (1984). [CrossRef]
  18. J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. W. Thompson, and R. B. Wilcox, "Observation and suppression of transverse stimulated Brillouin scattering in large optics," J. Opt. Soc. Am. B 6, 2402-2411 (1989). [CrossRef]
  19. R. Craxton, "High-efficiency tripling schemes for high-power Nd-glass lasers," IEEE J. Quantum Electron. 17, 1771-1782 (1989). [CrossRef]
  20. D. Eimerl, J. M. Auerbach, and P. W. Milonni, "Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields," J. Mod. Opt. 42, 1037-1067 (1995). [CrossRef]
  21. W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.
  22. J. M. Auerbach, P. J. Wegner, S. A. Couture, D. Eimerl, R. L. Hibbard, D. Milam, M. A. Norton, P. K. Whitman, and L. A. Hackel, "Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities," Appl. Opt. 40, 1404-1411 (2001). [CrossRef]
  23. R. H. Hardin and F. D. Tappert, "Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations," SIAM Rev. 15, 423 (1973).
  24. P. M. Cooley and J. W. Tukey, "An algorithm for the machine computation of complex Fourier series," Math. Comput. 19, 291-301 (1965).
  25. D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, "Polarization smoothing in a convergent beam," Appl. Opt. 43, 6639-6647 (2004). [CrossRef]
  26. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, "Improved laser beam uniformity using the angular dispersion of frequency-modulated light," J. Appl. Phys. 66, 3456-3462 (1989). [CrossRef]
  27. J. E. Rothenberg, "Comparison of beam-smoothing methods for direct-drive inertial confinement fusion," J. Opt. Soc. Am. B 14, 1664-1671 (1997). [CrossRef]
  28. J. Goodman, in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1984), Chap. 2.
  29. H. T. Powell, S. N. Dixit, and M. A. Henesian, Beam Smoothing Capability on the Nova Laser, LLNL Rep. UCRL-LR-105821-91-1, (Lawrence Livermore National Laboratory, 1990), pp. 28-38.
  30. S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, "Random phase plates for beam smoothing on the Nova laser," Appl. Opt. 32, 2543-2554 (1993). [CrossRef] [PubMed]
  31. S. N. Dixit, I. M. Thomas, M. R. Rushford, R. Merrill, M. D. Perry, H. T. Powell and K. A. Nugent, "Kinoform phase plates for tailoring focal plane intensity profiles," LLNL Rep. UCRL-LR-105821-94-4, (Lawrence Livermore National Laboratory, 1994), pp. 152-159.
  32. S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, "Designing fully continuous phase plates for tailoring focal plane irradiance profiles," Opt. Lett. 21, 1715-1717 (1996). [CrossRef] [PubMed]
  33. J. A. Menapace, S. N. Dixit, F. Y. Génin, and W. F. Brocious, "Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces," Proc. SPIE 5273, 220-230 (2003). [CrossRef]
  34. M. Shaw, W. Williams, K. Jancaitis, C. Widmayer, and R. House, "Performance and operational modeling of the National Ignition Facility," at the International Symposium on Optical Science and Technology (2003).
  35. C. A. Haynam, R. A. Sacks, and M. J. Shaw, "Computational modeling in support of the National Ignition Facility operations," presented at the 8th International Conference on Accelerator and Large Experimental Physics and Controls Systems (ICALEPS, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited