OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 17 — Jun. 10, 2007
  • pp: 3611–3616

Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source

Albert A. Ruth, Johannes Orphal, and Sven E. Fiedler  »View Author Affiliations


Applied Optics, Vol. 46, Issue 17, pp. 3611-3616 (2007)
http://dx.doi.org/10.1364/AO.46.003611


View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A cavity-enhanced absorption setup employing an incoherent broadband light source was used in combination with a Fourier-transform spectrometer to measure the spin-forbidden B-band of gaseous oxygen at 688   nm and several weak absorption transitions of water vapor in the same spectral region at room temperature in ambient air. The experiments demonstrate that the sensitivity of a Fourier-transform spectrometer can be significantly improved by increasing the effective path length, while retaining a rather small sample volume. In comparison with a single-pass absorption measurement, we report a path-length enhancement factor of 200 and an improvement of the signal-to-noise ratio of 6 in the present cavity-enhanced absorption experiment. The practical advantages and limitations of this novel approach are outlined and potential applications are briefly discussed.

© 2007 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.1030) Spectroscopy : Absorption
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6390) Spectroscopy : Spectroscopy, molecular
(350.5730) Other areas of optics : Resolution

ToC Category:
Spectroscopy

History
Original Manuscript: November 8, 2006
Revised Manuscript: January 12, 2007
Manuscript Accepted: January 23, 2007
Published: May 18, 2007

Citation
Albert A. Ruth, Johannes Orphal, and Sven E. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source," Appl. Opt. 46, 3611-3616 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-17-3611


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. O'Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum. 59, 2544-2551 (1988). [CrossRef]
  2. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94, 337-351 (1998). [CrossRef]
  3. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  4. B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83, 975-999 (2005). [CrossRef]
  5. S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103, 5239-5262 (2003). [CrossRef] [PubMed]
  6. S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371, 284-294 (2003). [CrossRef]
  7. E. Hamers, D. Schram, and R. Engeln, "Fourier transform phase shift cavity ring down spectroscopy," Chem. Phys. Lett. 365, 237-243 (2002). [CrossRef]
  8. R. Engeln, G. von Helden, G. Berden, and G. Meijer, "Phase shift cavity ring down absorption spectroscopy," Chem. Phys. Lett. 262, 105-109 (1996). [CrossRef]
  9. A. Del Olmo, C. Domingo, J. M. Orza, and D. Bermejo, "FT intracavity laser spectroscopy--the BX transition of Cl2," J. Mol. Spectrosc. 145, 323-330 (1991). [CrossRef]
  10. S. M. Hu, H. Lin, S. G. He, J. X. Cheng, and Q. S. Zhu, "Fourier-transform intra-cavity laser absorption spectroscopy of HOD ν(OD) = 5 overtone," Phys. Chem. Chem. Phys. 1, 3727-3730 (1999). [CrossRef]
  11. D. S. Venables, T. Gherman, J. Orphal, J. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40, 6758-6763 (2006). [CrossRef] [PubMed]
  12. Please note that for very small (absorption) losses 1 − (I/I0) ≈ (I0/I) − 1.
  13. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  14. J. W. Brault, "High precision Fourier transform spectrometry. The critical role of phase corrections," Microchim. Acta 93, 215-227 (1987). [CrossRef]
  15. J. R. Birch and F. J. J. Clarke, "Fifty categories of ordinate error in Fourier transform spectroscopy," Spectroscopy Europe 7, 16-22 (1995).
  16. S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy in liquids," Rev. Sci. Instrum. 76, 023107 (2005). [CrossRef]
  17. S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy in liquids," Rev. Sci. Instrum. 76, 089901 (2005) (Erratum). [CrossRef]
  18. S. Kassi, C. Depiesse, M. Herman, and D. Hurtmans, "Fourier transform-intracavity laser absorption spectroscopy: sampling the overtone spectrum of (C2HD)-C-12m," Mol. Phys. 101, 1155-1163 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited