OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 46, Iss. 17 — Jun. 10, 2007
  • pp: 3628–3638

Three-dimensional time-resolved optical mammography of the uncompressed breast

Louise C. Enfield, Adam P. Gibson, Nicholas L. Everdell, David T. Delpy, Martin Schweiger, Simon R. Arridge, Caroline Richardson, Mohammad Keshtgar, Michael Douek, and Jeremy C. Hebden  »View Author Affiliations

Applied Optics, Vol. 46, Issue 17, pp. 3628-3638 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical tomography is being developed as a means of detecting and specifying disease in the adult female breast. We present a series of clinical three-dimensional optical images obtained with a 32-channel time-resolved system and a liquid-coupled interface. Patients place their breasts in a hemispherical cup to which sources and detectors are coupled, and the remaining space is filled with a highly scattering fluid. A cohort of 38 patients has been scanned, with a variety of benign and malignant lesions. Images show that hypervascularization associated with tumors provides very high contrast due to increased absorption by hemoglobin. Only half of the fibroadenomas scanned could be observed, but of those that could be detected, all but one revealed an apparent increase in blood volume and a decrease in scatter and oxygen saturation.

© 2007 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(170.3830) Medical optics and biotechnology : Mammography

ToC Category:
Imaging Systems

Original Manuscript: October 30, 2006
Revised Manuscript: January 24, 2007
Manuscript Accepted: January 31, 2007
Published: May 18, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Louise C. Enfield, Adam P. Gibson, Nicholas L. Everdell, David T. Delpy, Martin Schweiger, Simon R. Arridge, Caroline Richardson, Mohammad Keshtgar, Michael Douek, and Jeremy C. Hebden, "Three-dimensional time-resolved optical mammography of the uncompressed breast," Appl. Opt. 46, 3628-3638 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Office for National Statistics, Mortality Statistics: Cause England and Wales 2004 (The Stationary Office, 2004). [PubMed]
  2. L. Tabar, M.-F. Yen, B. Vitak, H.-H. Chen, R. A. Smith, and S. W. Duffy, "Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening," Lancet 361, 1405-1410 (2003). [CrossRef] [PubMed]
  3. R. W. Blamey, A. R. M. Wilson, and J. Patnick, "Screening for breast cancer," BMJ 689, 693 (2003). [PubMed]
  4. M. D. Schnall, "Application of magnetic resonance imaging to early detection of breast cancer," Breast Cancer Res. 3, 17-21 (2001). [CrossRef] [PubMed]
  5. D. D. Pavic, M. D. Koomen, C. D. Kuzmiak, and E. D. Pisano, "Ultrasound in the management of breast disease," Curr. Womens Health Rep. 3, 156-164 (2003). [PubMed]
  6. A. E. Cerussi, A. I. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, "Sources of absorption and scattering contrast for near infrared optical mammography," Acad. Radiol. 8, 211-218 (2001). [CrossRef] [PubMed]
  7. S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, "Clinical optical tomography and NIR spectroscopy for breast cancer detection," IEEE Quantum Electron. 5, 1143-1158 (1999). [CrossRef] [PubMed]
  8. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, "Optical properties of normal and diseased human breast tissue in the visible and near infrared," Phys. Med. Biol. 35, 1317-1334 (1990). [CrossRef] [PubMed]
  9. X. Cheng, J. Mao, R. Bush, D. B. Kopans, R. H. Moore, and M. Chorlton, "Breast cancer detection by mapping hemoglobin concentration and oxygen saturation," Appl. Opt. 42, 6412-6421 (2003). [CrossRef] [PubMed]
  10. S. Jiang, B. W. Pogue, T. O. McBride, and K. D. Paulsen, "Quantative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom," J. Biomed. Opt. 8, 308-315 (2003). [CrossRef] [PubMed]
  11. A. Li, E. L. Miller, M. Kilmer, T. J. Brukilacchio, T. Chaves, J. J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, "Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-5190 (2003). [CrossRef] [PubMed]
  12. C. H. Schmitz, D. P. Klemer, R. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, "Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements," Appl. Opt. 44, 2140-2152 (2005). [CrossRef] [PubMed]
  13. Y. Young, M. Shnall, S. Zhao, S. Orel, C. Xie, S. Nioka, B. Chance, and A. Solin, "Optical imaging of breast tumour by means of continuous waves," Adv. Exp. Med. Biol. 441, 227-232 (1997).
  14. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, "Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging," Med. Phys. 30, 235-247 (2003). [CrossRef] [PubMed]
  15. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, "Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection," Opt. Express 1, 391-403 (1997). [CrossRef] [PubMed]
  16. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. Moller, C. Stroszczynski, J. Stobel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of hemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181 (2004). [CrossRef] [PubMed]
  17. P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, and R. Cubeddu, "Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm," J. Biomed. Opt. 9, 464-473 (2004). [CrossRef] [PubMed]
  18. T. D. Yates, J. C. Hebden, A. P. Gibson, N. L. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005). [CrossRef] [PubMed]
  19. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004). [CrossRef] [PubMed]
  20. D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gabauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005). [CrossRef] [PubMed]
  21. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005). [CrossRef] [PubMed]
  22. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, and R. Cubeddu, "Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions," Phys. Med. Biol. 50, 2469-2488 (2005). [CrossRef] [PubMed]
  23. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, and R. Cubeddu, "Characterization of female breast lesions from multi-wavelength time-resolved optical mammography," Phys. Med. Biol. 50, 2489-2502 (2005). [CrossRef] [PubMed]
  24. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, "Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue," Appl. Opt. 38, 5480-5490 (1999). [CrossRef] [PubMed]
  25. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, "Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom and clinical results," Appl. Opt. 42, 135-145 (2003). [CrossRef] [PubMed]
  26. B. W. Pogue, S. Jiang, X. Song, S. Srinivasan, H. Dehghani, K. D. Paulsen, T. D. Tosteson, C. Kogel, S. Soho, and S. P. Poplack, "Near-infrared scattering spectrum differences between benign and malignant breast tumours measured in vivo with diffuse tomography," in OSA Biomedical Topical Meeting (2004).
  27. R. Wiener, R. Choe, A. Corlu, K. Lee, S. M. Crinivas, J. R. Saffer, R. Freifelder, J. S. Karp, A. G. Yodh, and S. D. Konecky, "Diffuse optical tomography and positron emission tomography of human breast," in Biomedical Optics Topical Meeting (2006).
  28. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czernieki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005). [CrossRef] [PubMed]
  29. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, "In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green," Med. Phys. 30, 1039-1047 (2003). [CrossRef] [PubMed]
  30. O. Zhang, T. I. Brukilacchio, A. Li, J. J. Scott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt. 10, 024033 (2005). [CrossRef] [PubMed]
  31. B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, "Diffuse optics in breast cancer: detecting tumours in pre-menopausal women and monitoring neoadjuvant chemotherapy," Breast Cancer Res. 7, 279-285 (2005). [CrossRef]
  32. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, "A 32-channel time-resolved instrument for medical optical tomography," Rev. Sci. Instrum. 71, 256-265 (1998). [CrossRef] [PubMed]
  33. J. C. Hebden, T. D. Yates, A. Gibson, N. Everdell, S. R. Arridge, D. W. Chicken, M. Douek, and M. R. S. Keshtgar, "Monitoring recovery after laser surgery of the breast with optical tomography: a case study," Appl. Opt. 44, 1898-1904 (2005). [CrossRef] [PubMed]
  34. T. D. Yates, J. C. Hebden, A. P. Gibson, L. Enfield, N. L. Everdell, S. R. Arridge, and D. T. Delpy, "Time-resolved optical mammography using a liquid coupled interface," J. Biomed. Opt. 10, 054011 (2005). [CrossRef] [PubMed]
  35. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, and D. T. Delpy, "A method for 3D time-resolved optical tomography," Int. J. Imaging Syst. Technol. 11, 2-11 (2000). [CrossRef]
  36. J. Schoberl, "NETGEN--an advancing front 2d/3D-mesh generator based on abstract rules," Comput. Vision Sci. 1, 41-52 (1997). [CrossRef]
  37. S. J. Matcher, M. Cope, and D. T. Delpy, "Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy," Phys. Med. Biol. 38, 177-196 (1993). [PubMed]
  38. E. M. C. Hillman, "Experimental and theoretical investigations of near-infrared tomographic imaging methods and clinical applications," Ph.D. thesis (University of London, 2002). [PubMed]
  39. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonlad, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumours," Appl. Opt. 42, 3170-3186 (2003). [CrossRef] [PubMed]
  40. M. A. Peters, D. R. Voegeli, and K. A. Scanlan, Breast Imaging (Churchill-Livingstone, 1989).
  41. S. Fantini, S. A. Walker, M. A. Franeschini, M. Kaschke, P. Schlag, and K. T. Moesta, "Assessment of the size, position and optical properties of breast tumors in vivo by noninvasive optical properties," Appl. Opt. 37, 1982-1989 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited