OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 46, Iss. 18 — Jun. 20, 2007
  • pp: 3674–3681

Optimum parallel-face slanted surface-relief gratings

Jonathan S. Maikisch and Thomas K. Gaylord  »View Author Affiliations


Applied Optics, Vol. 46, Issue 18, pp. 3674-3681 (2007)
http://dx.doi.org/10.1364/AO.46.003674


View Full Text Article

Enhanced HTML    Acrobat PDF (2651 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a combination of rigorous coupled-wave analysis and simulated annealing, parallel-face slanted surface-relief gratings (PFSSRGs) are optimized. For substrate-mode optical interconnects, profiles are presented for both polymer and silicon PFSSRGs for both TE and TM polarizations at normal incidence with grating periods designed to give a 45° output angle in the negative-first forward-diffracted order. The resulting diffraction efficiencies range from 70% to 99%, with a majority of the optimized profiles yielding over 90%. Optimized polymer profiles for TE and TM polarizations exhibit similar high diffraction efficiencies, but the TM profiles generally require greater groove depths. Silicon profiles optimized for TM polarization have greater diffraction efficiencies than those for TE polarization. Profiles that can feasibly be fabricated are identified, and sensitivities to groove depth, filling factor, slant angle, and incident angle are shown to be modest.

© 2007 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(230.1950) Optical devices : Diffraction gratings

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 27, 2007
Manuscript Accepted: February 16, 2007
Published: May 31, 2007

Citation
Jonathan S. Maikisch and Thomas K. Gaylord, "Optimum parallel-face slanted surface-relief gratings," Appl. Opt. 46, 3674-3681 (2007)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-18-3674


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Ura, T. Suhara, H. Nishihara, and J. Koyama, "An integrated-optic disk pickup device," J. Lightwave Technol. 4, 913-918 (1986). [CrossRef]
  2. J. M. Miller, N. de Meaucoudrey, P. Chavel, J. Turunen, and E. Cambril, "Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection," Appl. Opt. 36, 5717-5727 (1997). [CrossRef] [PubMed]
  3. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, S. Bristow, and Y. S. Liu, "Fully embedded board-level guided-wave optoelectronics interconnects," Proc. IEEE 88, 780-793 (2000). [CrossRef]
  4. A. V. Tishchenko, N. M. Lyndin, S. M. Loktev, V. A. Sychugov, and B. A. Usievich, "Unidirectional waveguide grating coupling by means of parallelogramic grooves," Proc. SPIE 3099, 269-277 (1997). [CrossRef]
  5. V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, and O. Parriaux, "Optimization and control of grating coupling to or from a silicon-based optical waveguide," Opt. Eng. 35, 3092-3100 (1996). [CrossRef]
  6. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE Quantum Electron. 38, 949-955 (2002). [CrossRef]
  7. B. D. Clymer, "Surface-relief grating structures for efficient high-bandwidth integrated photodetectors for optical interconnections in silicon VLSI," Appl. Opt. 28, 5374-5382 (1989). [CrossRef] [PubMed]
  8. E. Dupont, "Optimization of lamellar gratings for quantum-well infrared photodetectors," Appl. Phys. 88, 2687-2692 (2000). [CrossRef]
  9. A. Hamori and N. Nagy, "Sub-micrometer period refractive index grating coupler for single mode optical waveguide sensors," Proc. IEEE Sensors 3, 1333-1336 (2004). [CrossRef]
  10. N. Kinrot and M. Nathan, "Investigation of a periodically segmented waveguide Fabry-Pérot interferometer for use as a chemical/biosensor," J. Lightwave Technol. 24, 2139-2145 (2006). [CrossRef]
  11. D. Taillaert, R. Baets, P. Dumon, W. Bogaerts, D. van Thourhout, B. Luyssaert, V. Wiaux, S. Beckx, and J. Wouters, "Silicon-on-insulator platform for integrated wavelength-selective components," in Fourth IEEE/LEOS Workshop on Fibers and Optical Passive Components (IEEE, 2005), pp. 115-120. [CrossRef]
  12. D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, "Polarizing mirror/absorber for visible wavelengths based on a silicon subwavelength grating: design and fabrication," Appl. Opt. 37, 2534-2541 (1998). [CrossRef]
  13. Y. Li, D. Chen, and C. Yang, "Sub-microns period grating couplers fabricated by silicon mold," Opt. Laser Technol. 33, 623-626 (2001). [CrossRef]
  14. M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, "Optimization of diffraction grating profiles in fabrication by electron-beam lithography," Appl. Opt. 43, 5137-5142 (2004). [CrossRef] [PubMed]
  15. H. Nakano, T. Tanino, and Y. Shirota, "Surface relief grating formation on a single crystal of 4-(dimethylamino)azobenzene," Appl. Phys. Lett. 87, 061910 (2005). [CrossRef]
  16. E. A. Akhadov, A. H. Mueller, and M. A. Hoffbauer, "Energetic neutral atom beam lithography/epitaxy for nanoscale device fabrication," Mater. Res. Soc. Symp. Proc. 872, 503-506 (2005).
  17. E. A. Akhadov, D. E. Read, A. H. Mueller, J. Murray, and M. A. Hoffbauer, "Innovative approach to nanoscale device fabrication and low-temperature nitride film growth," J. Vac. Sci. Technol. B 23, 3116-3119 (2005). [CrossRef]
  18. A. H. Mueller, E. A. Akhadov, and M. A. Hoffbauer, "Low-temperature growth of crystalline GaN films using energetic neutral atomic-beam lithography/epitaxy," Appl. Phys. Lett. 84, 041907 (2006). [CrossRef]
  19. T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE 73, 894-937 (1985). [CrossRef]
  20. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982). [CrossRef]
  21. S. D. Wu, T. K. Gaylord, J. S. Maikisch, and E. N. Glytsis, "Optimization of anisotropically etched silicon surface-relief gratings for substrate-mode optical interconnects," Appl. Opt. 45, 15-21 (2006). [CrossRef] [PubMed]
  22. S. D. Wu, T. K. Gaylord, and E. N. Glytsis, "Optimization of sawtooth surface-relief gratings: effects of substrate refractive index and polarization," Appl. Opt. 45, 3420-3424 (2006). [CrossRef] [PubMed]
  23. B. Wang, J. Jiang, and G. P. Nordin, "Compact slanted grating couplers," Opt. Express 12, 3313-3326 (2004). [CrossRef] [PubMed]
  24. B. Wang, J. Jiang, and G. P. Nordin, "Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides," IEEE Photon. Technol. Lett. 17, 1884-1886 (2005). [CrossRef]
  25. B. Wang, J. Jiang, and G. P. Nordin, "Systematic design process for slanted grating couplers," Appl. Opt. 45, 6223-6226 (2006). [CrossRef] [PubMed]
  26. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited